Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Biol Chem ; 300(1): 105508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029967

RESUMO

Para-hydroxybenzoate hydroxylase (PHBH) is a group A flavoprotein monooxygenase that hydroxylates p-hydroxybenzoate to protocatechuate (PCA). Despite intensive studies of Pseudomonas aeruginosa p-hydroxybenzoate hydroxylase (PaPobA), the catalytic reactions of extremely diverse putative PHBH isozymes remain unresolved. We analyzed the phylogenetic relationships of known and predicted PHBHs and identified eight divergent clades. Clade F contains a protein that lacks the critical amino acid residues required for PaPobA to generate PHBH activity. Among proteins in this clade, Xylophilus ampelinus PobA (XaPobA) preferred PCA as a substrate and is the first known natural PCA 5-hydroxylase (PCAH). Crystal structures and kinetic properties revealed similar mechanisms of substrate carboxy group recognition between XaPobA and PaPobA. The unique Ile75, Met72, Val199, Trp201, and Phe385 residues of XaPobA form the bottom of a hydrophobic cavity with a shape that complements the 3-and 4-hydroxy groups of PCA and its binding site configuration. An interaction between the δ-sulfur atom of Met210 and the aromatic ring of PCA is likely to stabilize XaPobA-PCA complexes. The 4-hydroxy group of PCA forms a hydrogen bond with the main chain carbonyl of Thr294. These modes of binding constitute a novel substrate recognition mechanism that PaPobA lacks. This mechanism characterizes XaPobA and sheds light on the diversity of catalytic mechanisms of PobA-type PHBHs and group A flavoprotein monooxygenases.


Assuntos
4-Hidroxibenzoato-3-Mono-Oxigenase , Pseudomonas , 4-Hidroxibenzoato-3-Mono-Oxigenase/metabolismo , Sítios de Ligação , Flavoproteínas/genética , Flavoproteínas/metabolismo , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Filogenia , Pseudomonas/enzimologia , Pseudomonas/metabolismo , Xylophilus/enzimologia
2.
BMC Microbiol ; 22(1): 225, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167524

RESUMO

BACKGROUND: Folic acid (FA) is a synthetic vitamin (B9) and the oxidized form of a metabolic cofactor that is essential for life. Although the biosynthetic mechanisms of FA are established, its environmental degradation mechanism has not been fully elucidated. The present study aimed to identify bacteria in soil that degrade FA and the mechanisms involved. RESULTS: We isolated the soil bacterium Variovorax sp. F1 from sampled weed rhizospheres in a grassland and investigated its FA degradation mechanism. Cultured Variovorax sp. F1 rapidly degraded FA to pteroic acid (PA), indicating that FA hydrolysis to PA and glutamate. We cloned the carboxypeptidase G (CPG) gene and found widely distributed paralogs within the Variovorax genus. Recombinant CPG preferred FA and deaminofolic acid as substrates, indicating its involvement in FA degradation by Variovorax. Prolonged culture of Variovorax sp. F1 resulted in decreased rates of deaminofolic acid (DFA) and deaminopteroic acid (DPA) accumulation. This indicated that the deamination reaction also comprised a route of FA degradation. We also identified an F1 gene that was orthologous to the pterin deaminase gene (Arad3529) of Agrobacterium radiobacter. The encoded protein deaminated FA and PA to DFA and DPA, which was consistent with the deamination activity of FA and PA in bacterial cell-free extracts. CONCLUSION: We discovered that the two enzymes required for FA degradation pathways in isolates of Variovorax sp. F1 comprise CPG and pterin deaminase, and that DFA and PA are intermediates in the generation of DPA.


Assuntos
Comamonadaceae , Ácido Fólico , Aminoidrolases , Comamonadaceae/genética , Ácido Fólico/metabolismo , Glutamatos/metabolismo , Redes e Vias Metabólicas/genética , Solo , Vitaminas , gama-Glutamil Hidrolase/genética , gama-Glutamil Hidrolase/metabolismo
3.
Biosci Biotechnol Biochem ; 86(8): 1114-1121, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35612977

RESUMO

The aromatic diamine 2-(4-aminophenyl)ethylamine (4APEA) is a potential monomer for polymers and advanced materials. Here, 4APEA was produced by fermentation using genetically engineered Escherichia coli (Masuo et al.2016). Optimizing fed-batch cultures of this strain produced the highest reported yield to date of 4APEA (7.2%; 3.5 g/L versus glucose) within 72 h. Appropriate aeration was important to maximize production and avoid unfavorable 4APEA degradation. Fermented 4APEA was purified from culture medium and polymerized with methylene diphenyldiisocyanate and hexamethylene diisocyanate to produce polyureas PU-1 and PU-2, respectively. The decomposition temperatures for 10% weight loss (Td10) of PU-1 and PU-2 were 276 °C and 302 °C, respectively, and were comparable with that of other thermostable aromatic polyureas. This study is the first to synthesize polyureas from the microbial aromatic diamine. Their excellent thermostability will be useful for the industrial production of heat-resistant polymer materials.


Assuntos
Escherichia coli , Temperatura Alta , Diaminas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , Engenharia Metabólica , Fenetilaminas
4.
Chembiochem ; 21(3): 353-359, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31322801

RESUMO

Pyrazines are widespread chemical compounds that include pheromones and odors. Herein, a novel mechanism used by Pseudomonas fluorescens SBW25 to biosynthesize monocyclic pyrazines is reported. Heterologous expression of the papABC genes that synthesize the natural α-amino acid 4-aminophenylalanine (4APhe), together with three adjacent papDEF genes of unknown function, in Escherichia coli resulted in the production of 2,5-dimethyl-3,6-bis(4-aminobenzyl)pyrazine (DMBAP), which comprised two symmetrical aminobenzyl moieties derived from 4APhe. It is found that PapD is a novel amino acid C-acetyltransferase, which decarboxylates and transfers acetyl residues to 4APhe, to generate an α-aminoketone, which spontaneously dehydrates and condenses to give dihydro DMBAP. PapF is a novel oxidase in the amine oxidase superfamily that oxidizes dihydro DMBAP to yield the pyrazine ring of DMBAP. These two enzymes constitute a unique mechanism for synthesizing monocyclic pyrazines and might serve as a novel strategy for the enzymatic synthesis of pyrazine derivatives from natural α-amino acids.


Assuntos
Acetiltransferases/metabolismo , Aminoácidos/metabolismo , Oxirredutases/metabolismo , Pseudomonas fluorescens/enzimologia , Pirazinas/metabolismo , Acetiltransferases/química , Aminoácidos/química , Estrutura Molecular , Oxirredutases/química , Pirazinas/química
5.
Biosci Biotechnol Biochem ; 84(5): 1056-1061, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31959067

RESUMO

Unlike its biosynthetic mechanisms and physiological function, current understanding of riboflavin degradation in soil is limited to a few bacteria that decompose it to lumichrome. Here, we isolated six Microbacterium and three Nocardioides strains. These strains utilized riboflavin and lumichrome, respectively, as carbon sources. Among these strains, we identified Microbacterium paraoxydans R16 (R16) and Nocardioides nitrophenolicus L16 (L16), which were isolated form the same enrichment culture. Co-cultured R16 and L16 reconstituted a riboflavin-degrading interspecies consortium, in which the R16 strain degraded riboflavin to lumichrome and ᴅ-ribose. The L16 strain utilized the lumichrome as a carbon source, indicating that R16 is required for L16 to grow in the consortium. Notably, rates of riboflavin degradation and growth were increased in co-cultured, compared with monocultured R16 cells. These results indicated that a beneficial symbiotic interaction between M. paraoxydans R16 and N. nitrophenolicus L16 results in the ability to degrade riboflavin.


Assuntos
Simbiose/fisiologia , Sequência de Bases , Biodegradação Ambiental , Técnicas de Cocultura , DNA Bacteriano/genética , Flavinas/metabolismo , Homeostase , Microbacterium/genética , Microbacterium/metabolismo , Nocardioides/genética , Nocardioides/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Riboflavina/metabolismo , Ribose/metabolismo , Microbiologia do Solo
6.
Proc Natl Acad Sci U S A ; 114(22): 5701-5706, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507141

RESUMO

Many eukaryotic cells grow by extending their cell periphery in pulses. The molecular mechanisms underlying this process are not yet fully understood. Here we present a comprehensive model of stepwise cell extension by using the unique tip growth system of filamentous fungi. Live-cell imaging analysis, including superresolution microscopy, revealed that the fungus Aspergillus nidulans extends the hyphal tip in an oscillatory manner. The amount of F-actin and secretory vesicles (SV) accumulating at the hyphal tip oscillated with a positive temporal correlation, whereas vesicle amounts were negatively correlated to the growth rate. The intracellular Ca2+ level also pulsed with a positive temporal correlation to the amount of F-actin and SV at the hyphal tip. Two Ca2+ channels, MidA and CchA, were needed for proper tip growth and the oscillations of actin polymerization, exocytosis, and the growth rate. The data indicate a model in which transient Ca2+ pluses cause depolymerization of F-actin at the cortex and promote SV fusion with the plasma membrane, thereby extending the cell tip. Over time, Ca2+ diffuses away and F-actin and SV accumulate again at the hyphal tip. Our data provide evidence that temporally controlled actin polymerization and exocytosis are coordinated by pulsed Ca2+ influx, resulting in stepwise cell extension.


Assuntos
Aspergillus nidulans/crescimento & desenvolvimento , Canais de Cálcio/metabolismo , Cálcio/química , Hifas/crescimento & desenvolvimento , Neurospora crassa/crescimento & desenvolvimento , Actinas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Exocitose/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Hifas/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Periodicidade , Vesículas Secretórias/metabolismo
7.
Biochem Biophys Res Commun ; 517(2): 260-265, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31349967

RESUMO

A series of genetically encoded sensors have been developed to detect the important signaling molecule H2O2 in living cells. However, more responsive and sensitive biosensors need to be developed. To address these demands, we used E. coli as a platform to develop a novel fluorescent H2O2 sensor, which we refer to as TScGP. This sensor employs a circularly permuted YFP (cpYFP) and is based on a redox relay between peroxiredoxin (Prx) and thioredoxin (Trx). Structurally, cpYFP is sandwiched between a fungal PrxA and a C-terminal cysteine mutated TrxA that can form a stabilized disulfide bond between PrxA and TrxA in response to H2O2. We confirmed that TScGP can be used for detecting exogenous H2O2 in the range of 0.5-5 µM with high selectivity and rapidly detecting H2O2 within 30 s in E. coli. To demonstrate an application, cellular H2O2 production by menadione was detected directly by TScGP. Our results demonstrated that using Prx-Trx combination as a sensing moiety is another strategy in designing H2O2 sensor with high performance.


Assuntos
Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/análise , Peroxirredoxinas/química , Tiorredoxinas/química , Aspergillus nidulans/química , Aspergillus nidulans/genética , Escherichia coli/química , Escherichia coli/genética , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Peroxirredoxinas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Espectrometria de Fluorescência/métodos , Tiorredoxinas/genética
8.
J Bacteriol ; 200(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29610214

RESUMO

The actinobacterium Microbacterium maritypicum splits riboflavin (vitamin B2) into lumichrome and d-ribose. However, such degradation by other bacteria and the involvement of a two-component flavin-dependent monooxygenase (FMO) in the reaction remain unknown. Here we investigated the mechanism of riboflavin degradation by the riboflavin-assimilating alphaproteobacterium Devosia riboflavina (formerly Pseudomonas riboflavina). We found that adding riboflavin to bacterial cultures induced riboflavin-degrading activity and a protein of the FMO family that had 67% amino acid identity with the predicted riboflavin hydrolase (RcaE) of M. maritypicum MF109. The D. riboflavina genome clustered genes encoding the predicted FMO, flavin reductase (FR), ribokinase, and flavokinase, and riboflavin induced their expression. This finding suggests that these genes constitute a mechanism for utilizing riboflavin as a carbon source. Recombinant FMO (rFMO) protein of D. riboflavina oxidized riboflavin in the presence of reduced flavin mononucleotide (FMN) provided by recombinant FR (rFR), oxidized FMN and NADH, and produced stoichiometric amounts of lumichrome and d-ribose. Further investigation of the enzymatic properties of D. riboflavina rFMO indicated that rFMO-rFR coupling accompanied O2 consumption and the generation of enzyme-bound hydroperoxy-FMN, which are characteristic of two-component FMOs. These results suggest that D. riboflavina FMO is involved in hydroperoxy-FMN-dependent mechanisms to oxygenize riboflavin and a riboflavin monooxygenase is necessary for the initial step of riboflavin degradation.IMPORTANCE Whether bacteria utilize either a monooxygenase or a hydrolase for riboflavin degradation has remained obscure. The present study found that a novel riboflavin monooxygenase, not riboflavin hydrolase, facilitated this process in D. riboflavina The riboflavin monooxygenase gene was clustered with flavin reductase, flavokinase, and ribokinase genes, and riboflavin induced their expression and riboflavin-degrading activity. The gene cluster is uniquely distributed in Devosia species and actinobacteria, which have exploited an environmental niche by developing adaptive mechanisms for riboflavin utilization.


Assuntos
Alphaproteobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Dinitrocresóis/metabolismo , Oxigenases de Função Mista/metabolismo , Riboflavina/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/genética , FMN Redutase/genética , FMN Redutase/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavinas/metabolismo , Oxigenases de Função Mista/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
9.
J Biol Chem ; 292(26): 11043-11054, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28465348

RESUMO

In response to limited nutrients, fungal cells exit the primary growth phase, enter the stationary phase, and cease proliferation. Although fundamental to microbial physiology in many environments, the regulation of this transition is poorly understood but likely involves many transcriptional regulators. These may include the sirtuins, which deacetylate acetyllysine residues of histones and epigenetically regulate global transcription. Therefore, we investigated the role of a nuclear sirtuin, sirtuin E (SirE), from the ascomycete fungus Aspergillus nidulans An A. nidulans strain with a disrupted sirE gene (SirEΔ) accumulated more acetylated histone H3 during the stationary growth phase when sirE was expressed at increased levels in the wild type. SirEΔ exhibited decreased mycelial autolysis, conidiophore development, sterigmatocystin biosynthesis, and production of extracellular hydrolases. Moreover, the transcription of the genes involved in these processes was also decreased, indicating that SirE is a histone deacetylase that up-regulates these activities in the stationary growth phase. Transcriptome analyses indicated that SirE repressed primary carbon and nitrogen metabolism and cell-wall synthesis. Chromatin immunoprecipitation demonstrated that SirE deacetylates acetylated Lys-9 residues in histone H3 at the gene promoters of α-1,3-glucan synthase (agsB), glycolytic phosphofructokinase (pfkA), and glyceraldehyde 3-phosphate (gpdA), indicating that SirE represses the expression of these primary metabolic genes. In summary, these results indicate that SirE facilitates the metabolic transition from the primary growth phase to the stationary phase. Because the observed gene expression profiles in stationary phase matched those resulting from carbon starvation, SirE appears to control this metabolic transition via a mechanism associated with the starvation response.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Sirtuínas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Sirtuínas/genética , Fatores de Transcrição/genética
10.
Biochem Biophys Res Commun ; 503(3): 1581-1586, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30054046

RESUMO

Metabolism and utilization of plant-derived aromatic substances are fundamental to the saprophytic growth of Streptomyces. Here, we studied an enzyme activity reducing 2,6-dichlorophenolindophenol and nitroblue tetrazolium in the culture supernatant of Streptomyces coelicolor A3(2). N-terminal amino acid sequencing of a nitroblue tetrazolium-reducing enzyme revealed that the enzyme corresponds to the SCO2180 product. The protein exhibited a marked similarity with dihydrolipoamide dehydrogenase, the E3 subunit of 2-oxo-acid dehydrogenase complex. A recombinant SCO2180 protein formed a homodimer and exhibited a diaphorase activity catalyzing NADH-dependent reduction of various quinonic substrates. Similar nitroblue tetrazolium-reducing activities were observed for other Streptomyces strains isolated from soil, implying that the diaphorase-catalyzed reduction of quinonic substances widely occurs in the extracytoplasmic space of Streptomyces.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Citoplasma/enzimologia , Di-Hidrolipoamida Desidrogenase/metabolismo , Streptomyces coelicolor/enzimologia , Biocatálise
11.
Fungal Genet Biol ; 110: 48-55, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175367

RESUMO

Glycogen is a homopolymer of glucose and a ubiquitous cellular-storage carbon. This study investigated which Aspergillus nidulans genes are involved in glycogen metabolism. Gene disruptants of predicted glycogen synthase (gsyA) and glycogenin (glgA) genes accumulated less cellular glycogen than the wild type strain, indicating that GsyA and GlgA synthesize glycogen similarly to other eukaryotes. Meanwhile, gene disruption of gphA encoding glycogen phosphorylase increased the amount of glycogen to a higher degree than wild type during the stationary phase that accompanies carbon-source limitation. GFP-tagged GsyA and GphA were distributed in the cytosol and formed punctate and filamentous structures, respectively. Carbon starvation resulted in elongated GphA-GFP filaments and increased numbers of filaments. These structures were more frequently located in the basal regions of tip cells and adjacent cells than in the apical regions of tip cells. Cellular glycogen visualized by incorporation of a fluorescent glucose analog accumulated in cytoplasmic puncta that were more prevalent in the basal regions, a pattern similar to that seen for GsyA. The colocalization of glycogen and GsyA at punctate structures in tip and sub-apical cells likely represents the cellular machinery for synthesizing glycogen. More frequent colocalization in the basal, rather than tip cell apical regions indicated that tip cells have differentiated subcellular regions for glycogen synthesis. Our findings regarding glycogen, GsyA and GphA distribution evoke the spatial heterogeneity of glycogen metabolism in fungal hyphae.


Assuntos
Aspergillus nidulans/enzimologia , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Glicogênio/metabolismo , Glucosiltransferases/metabolismo , Glicogênio Sintase/metabolismo , Glicoproteínas/metabolismo , Hifas/citologia , Hifas/metabolismo
12.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30171007

RESUMO

The activity of a self-sufficient cytochrome P450 enzyme, CYP505D6, from the lignin-degrading basidiomycete Phanerochaete chrysosporium was characterized. Recombinant CYP505D6 was produced in Escherichia coli and purified. In the presence of NADPH, CYP505D6 used a series of saturated fatty alcohols with C9-18 carbon chain lengths as the substrates. Hydroxylation occurred at the ω-1 to ω-6 positions of such substrates with C9-15 carbon chain lengths, except for 1-dodecanol, which was hydroxylated at the ω-1 to ω-7 positions. Fatty acids were also substrates of CYP505D6. Based on the sequence alignment, the corresponding amino acid of Tyr51, which is located at the entrance to the active-site pocket in CYP102A1, was Val51 in CYP505D6. To understand the diverse hydroxylation mechanism, wild-type CYP505D6 and its V51Y variant and wild-type CYP102A1 and its Y51V variant were generated, and the products of their reaction with dodecanoic acid were analyzed. Compared with wild-type CYP505D6, its V51Y variant generated few products hydroxylated at the ω-4 to ω-6 positions. The products generated by wild-type CYP102A1 were hydroxylated at the ω-1 to ω-4 positions, whereas its Y51V variant generated ω-1 to ω-7 hydroxydodecanoic acids. These observations indicated that Val51 plays an important role in determining the regiospecificity of fatty acid hydroxylation, at least that at the ω-4 to ω-6 positions. Aromatic compounds, such as naphthalene and 1-naphthol, were also hydroxylated by CYP505D6. These findings highlight a unique broad substrate spectrum of CYP505D6, rendering it an attractive candidate enzyme for the biotechnological industry.IMPORTANCEPhanerochaete chrysosporium is a white-rot fungus whose metabolism of lignin, aromatic pollutants, and lipids has been most extensively studied. This fungus harbors 154 cytochrome P450-encoding genes in the genome. As evidenced in this study, P. chrysosporium CYP505D6, a fused protein of P450 and its reductase, hydroxylates fatty alcohols (C9-15) and fatty acids (C9-15) at the ω-1 to ω-7 or ω-1 to ω-6 positions, respectively. Naphthalene and 1-naphthol were also hydroxylated, indicating that the substrate specificity of CYP505D6 is broader than those of the known fused proteins CYP102A1 and CYP505A1. The substrate versatility of CYP505D6 makes this enzyme an attractive candidate for biotechnological applications.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Proteínas Fúngicas/química , Phanerochaete/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Álcoois Graxos/química , Álcoois Graxos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidroxilação , Lignina/química , Lignina/metabolismo , NADP/metabolismo , Oxirredução , Phanerochaete/química , Phanerochaete/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
13.
Appl Microbiol Biotechnol ; 102(2): 631-639, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29150705

RESUMO

Biomass plastics are expected to contribute to the establishment of a carbon-neutral society by replacing conventional plastics derived from petroleum. The biomass-derived aromatic amine 4-aminocinnamic acid (4ACA) produced by recombinant bacteria is applied to the synthesis of high-performance biopolymers such as polyamides and polyimides. Here, we developed a microbial catalyst that hydrogenates the α,ß-unsaturated carboxylic acid of 4ACA to generate 4-aminohydrocinnamic acid (4AHCA). The ability of 10 microbial genes for enoate and xenobiotic reductases expressed in Escherichia coli to convert 4ACA to 4AHCA was assessed. A strain producing 2-enoate reductase from Clostridium acetobutylicum (ca2ENR) reduced 4ACA to 4AHCA with a yield of > 95% mol mol-1 and reaction rates of 3.4 ± 0.4 and 4.4 ± 0.6 mM h-1 OD600-1 at the optimum pH of 7.0 under aerobic and anaerobic conditions, respectively. This recombinant strain reduced caffeic, cinnamic, coumaric, and 4-nitrocinnamic acids to their corresponding propanoic acid derivatives. We polycondensed 4AHCA generated from biomass-derived 4ACA by dehydration under a catalyst to form high-molecular-weight poly(4AHCA) with a molecular weight of M n = 1.94 MDa. This polyamide had high thermal properties as indicated by a 10% reduction in weight at a temperature of T d10 = 394 °C and a glass transition temperature of T g = 240 °C. Poly(4AHCA) derived from biomass is stable at high temperatures and could be applicable to the production of high-performance engineering plastics.


Assuntos
Plásticos Biodegradáveis , Biomassa , Biopolímeros/biossíntese , Biocatálise , Ácidos Carboxílicos/metabolismo , Cinamatos/metabolismo , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrogênio , Hidrogenação , Nylons/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Temperatura
14.
Biochem Biophys Res Commun ; 482(4): 1007-1012, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27908731

RESUMO

Hydrazidase was an enzyme that remained unidentified for a half century. However, recently, it was purified, and its encoding gene was cloned. Microbacterium sp. strain HM58-2 grows with acylhydrazides as its sole carbon source; it produces hydrazidase and degrades acylhydrazides to acetate and hydrazides. The bacterial hydrazidase belongs to the amidase signature enzyme family and contains a Ser-cisSer-Lys catalytic motif. The condensation of hydrazine and carbonic acid produces various hydrazides, some of which are raw materials for synthesizing pharmaceuticals and other useful chemicals. Although natural hydrazide compounds have been identified, the metabolic systems for hydrazides are not fully understood. Here, we report the crystal structure of hydrazidase from Microbacterium sp. strain HM58-2. The active site was revealed to consist of a Ser-cisSer-Lys catalytic triad, in which Ser179 forms a covalent bond with a carbonyl carbon of the substrate. 4-Hydroxybenzoic acid hydrazide bound to the S179A mutant, showing an oxyanion hole composed of the three backbone amide groups. Furthermore, H336 in the non-conserved region in the amidase family may define the substrate specificity, which was confirmed by mutation analysis. A wild-type apoenzyme structure revealed an unidentified molecule covalently bound to S179, representing a tetrahedral intermediate.


Assuntos
Actinomycetales/química , Actinomycetales/enzimologia , Amidoidrolases/química , Actinomycetales/metabolismo , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Hidroxibenzoatos/metabolismo , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
15.
J Biol Chem ; 290(3): 1412-21, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25477516

RESUMO

Achromobacter denitrificans YD35 is an NO2 (-)-tolerant bacterium that expresses the aconitase genes acnA3, acnA4, and acnB, of which acnA3 is essential for growth tolerance against 100 mm NO2 (-). Atmospheric oxygen inactivated AcnA3 at a rate of 1.6 × 10(-3) min(-1), which was 2.7- and 37-fold lower compared with AcnA4 and AcnB, respectively. Stoichiometric titration showed that the [4Fe-4S](2+) cluster of AcnA3 was more stable against oxidative inactivation by ferricyanide than that of AcnA4. Aconitase activity of AcnA3 persisted against high NO2 (-) levels that generate reactive nitrogen species with an inactivation rate constant of k = 7.8 × 10(-3) min(-1), which was 1.6- and 7.8-fold lower than those for AcnA4 and AcnB, respectively. When exposed to NO2 (-), the acnA3 mutant (AcnA3Tn) accumulated higher levels of cellular citrate compared with the other aconitase mutants, indicating that AcnA3 is a major producer of cellular aconitase activity. The extreme resistance of AcnA3 against oxidation and reactive nitrogen species apparently contributes to bacterial NO2 (-) tolerance. AcnA3Tn accumulated less cellular NADH and ATP compared with YD35 under our culture conditions. The accumulation of more NO by AcnA3Tn suggested that NADH-dependent enzymes detoxify NO for survival in a high NO2 (-) milieu. This novel aconitase is distributed in Alcaligenaceae bacteria, including pathogens and denitrifiers, and it appears to contribute to a novel NO2 (-) tolerance mechanism in this strain.


Assuntos
Achromobacter denitrificans/enzimologia , Aconitato Hidratase/química , Proteínas de Bactérias/química , Óxido Nítrico/química , Oxigênio/química , Trifosfato de Adenosina/química , Ferricianetos/química , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas Ferro-Enxofre/química , Isoenzimas/química , Mutação , NAD/química , Nitrogênio/química , Oxirredução , Estresse Oxidativo , Filogenia , Espécies Reativas de Nitrogênio , Proteínas Recombinantes/química
16.
J Biol Chem ; 290(46): 27914-27, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26385921

RESUMO

Many filamentous fungi produce ß-mannan-degrading ß-1,4-mannanases that belong to the glycoside hydrolase 5 (GH5) and GH26 families. Here we identified a novel ß-1,4-mannanase (Man134A) that belongs to a new glycoside hydrolase (GH) family (GH134) in Aspergillus nidulans. Blast analysis of the amino acid sequence using the NCBI protein database revealed that this enzyme had no similarity to any sequences and no putative conserved domains. Protein homologs of the enzyme were distributed to limited fungal and bacterial species. Man134A released mannobiose (M2), mannotriose (M3), and mannotetraose (M4) but not mannopentaose (M5) or higher manno-oligosaccharides when galactose-free ß-mannan was the substrate from the initial stage of the reaction, suggesting that Man134A preferentially reacts with ß-mannan via a unique catalytic mode. Man134A had high catalytic efficiency (kcat/Km) toward mannohexaose (M6) compared with the endo-ß-1,4-mannanase Man5C and notably converted M6 to M2, M3, and M4, with M3 being the predominant reaction product. The action of Man5C toward ß-mannans was synergistic. The growth phenotype of a Man134A disruptant was poor when ß-mannans were the sole carbon source, indicating that Man134A is involved in ß-mannan degradation in vivo. These findings indicate a hitherto undiscovered mechanism of ß-mannan degradation that is enhanced by the novel ß-1,4-mannanase, Man134A, when combined with other mannanolytic enzymes including various endo-ß-1,4-mannanases.


Assuntos
Aspergillus nidulans/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Manosidases/química , Manosidases/classificação , beta-Manosidase/química , beta-Manosidase/classificação , Sequência de Aminoácidos , Aspergillus nidulans/genética , Catálise , Proteínas Fúngicas/genética , Mananas/química , Manosidases/genética , Dados de Sequência Molecular , Oligossacarídeos/química , Filogenia , Análise de Sequência de Proteína , beta-Manosidase/genética
17.
Appl Microbiol Biotechnol ; 100(20): 8701-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27225472

RESUMO

Cinnamic acid (CA) is the chemical basis for bulk production of flavoring reagents and chemical intermediates, and it can be fermented from biomass. Phenylalanine ammonia lyase (PAL) has been used exclusively in the bacterial fermentation of sugar biomass in which the fermentation intermediate phenylalanine is deaminated to CA. Here, we designed an alternative metabolic pathway for fermenting glucose to CA. An Escherichia coli strain that generates phenylalanine in this pathway also produces Wickerhamia fluorescens phenylpyruvate reductase and ferments glucose to D-phenyllactate (D-PhLA) (Fujita et al. Appl Microbiol Biotechnol 97: 8887-8894, 2013). Thereafter, phenyllactate dehydratase encoded by fldABCI genes in Clostridium sporogenes converts the resulting D-PhLA into CA. The phenyllactate dehydratase expressed by fldABCI in the D-PhLA-producing bacterium fermented glucose to CA, but D-PhLA fermentation and phenyllactate dehydration were aerobic and anaerobic processes, respectively, which disrupted high-yield CA fermentation in single batch cultures. We overcame this disruption by sequentially culturing the two strains under aerobic and anaerobic conditions. We optimized the incubation periods of the respective aeration steps to produce 1.7 g/L CA from glucose, which exceeded the yield from PAL-dependent glucose fermentation to CA 11-fold. This process is a novel, efficient alternative to conventional PAL-dependent CA production.


Assuntos
Cinamatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Lactatos/metabolismo , Engenharia Metabólica/métodos , Aerobiose , Anaerobiose , Clostridium/enzimologia , Clostridium/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/enzimologia , Saccharomycetales/genética
18.
Appl Microbiol Biotechnol ; 100(7): 3137-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26615399

RESUMO

Ethyl-2-hydroxy-4-methylpentanoate (ethyl leucate) contributes to a fruity flavor in Japanese sake. The mold Aspergillus oryzae synthesizes leucate from leucine and then the yeast Saccharomyces cerevisiae produces ethyl leucate from leucate during sake fermentation. Here, we investigated the enzyme involved in leucate synthesis by A. oryzae. The A. oryzae gene/cDNA encoding the enzyme involved in leucate synthesis was identified and expressed in E. coli and A. oryzae host cells. The purified recombinant enzyme belonged to a D-isomer-specific 2-hydroxyacid dehydrogenase family and it NADPH- or NADH-dependently reduced 4-methyl-2-oxopentanate (MOA), a possible intermediate in leucine synthesis, to D-leucate with a preference for NADPH. Thus, we designated this novel enzyme as MOA reductase A (MorA). Furthermore, an A. oryzae strain overexpressing morA produced 125-fold more leucate than the wild-type strain KBN8243. The strain overexpressing MorA produced 6.3-fold more ethyl leucate in the sake than the wild-type strain. These findings suggest that the strain overexpressing morA would help to ferment high-quality sake with an excellent flavor. This is the first study to identify the MOA reductase responsible for producing D-leucate in fungi.


Assuntos
Oxirredutases do Álcool/química , Bebidas Alcoólicas/análise , Aspergillus oryzae/enzimologia , Aromatizantes/metabolismo , Proteínas Fúngicas/química , Saccharomyces cerevisiae/enzimologia , Valeratos/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aspergillus oryzae/química , Aspergillus oryzae/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Aromatizantes/química , Indústria Alimentícia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Microbiologia Industrial , Cinética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Especificidade por Substrato , Valeratos/química
19.
Biosci Biotechnol Biochem ; 80(9): 1768-75, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26967817

RESUMO

Thiamine pyrophosphate (TPP) is a critical cofactor and its biosynthesis is under the control of TPP availability. Here we disrupted a predicted thiA gene of the fungus Aspergillus nidulans and demonstrated that it is essential for synthesizing cellular thiamine. The thiamine riboswitch is a post-transcriptional mechanism for TPP to repress gene expression and it is located on A. nidulans thiA pre-messenger RNA. The thiA riboswitch was not fully derepressed under thiamine-limited conditions, and fully derepressed under environmental stressors. Upon exposure to hypoxic stress, the fungus accumulated more ThiA and NmtA proteins, and more thiamine than under aerobic conditions. The thiA gene was required for the fungus to upregulate hypoxic branched-chain amino acids and ethanol fermentation that involve enzymes containing TPP. These findings indicate that hypoxia modulates thiA expression through the thiamine riboswitch, and alters cellular fermentation mechanisms by regulating the activity of the TPP enzymes.


Assuntos
Aspergillus nidulans/enzimologia , Proteínas Fúngicas/genética , Riboswitch/genética , Tiamina/biossíntese , Hipóxia Celular , Fermentação , Proteínas Fúngicas/biossíntese , Regulação Fúngica da Expressão Gênica , Estresse Fisiológico/genética , Tiamina/genética , Tiamina Pirofosfato/biossíntese , Tiamina Pirofosfato/genética
20.
J Bacteriol ; 197(6): 1115-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583978

RESUMO

The degradation mechanisms of natural and artificial hydrazides have been elucidated. Here we screened and isolated bacteria that utilize the acylhydrazide 4-hydroxybenzoic acid 1-phenylethylidene hydrazide (HBPH) from soils. Physiological and phylogenetic studies identified one bacterium as Microbacterium sp. strain HM58-2, from which we purified intracellular hydrazidase, cloned its gene, and prepared recombinant hydrazidase using an Escherichia coli expression system. The Microbacterium sp. HM58-2 hydrazidase is a 631-amino-acid monomer that was 31% identical to indoleacetamide hydrolase isolated from Bradyrhizobium japonicum. Phylogenetic studies indicated that the Microbacterium sp. HM58-2 hydrazidase constitutes a novel hydrazidase group among amidase signature proteins that are distributed within proteobacteria, actinobacteria, and firmicutes. The hydrazidase stoichiometrically hydrolyzed the acylhydrazide residue of HBPH to the corresponding acid and hydrazine derivative. Steady-state kinetics showed that the enzyme hydrolyzes structurally related 4-hydrozybenzamide to hydroxybenzoic acid at a lower rate than HBPH, indicating that the hydrazidase prefers hydrazide to amide. The hydrazidase contains the catalytic Ser-Ser-Lys motif that is conserved among members of the amidase signature family; it shares a catalytic mechanism with amidases, according to mutagenesis findings, and another hydrazidase-specific mechanism must exist that compensates for the absence of the catalytic Ser residue. The finding that an environmental bacterium produces hydrazidase implies the existence of a novel bacterial mechanism of hydrazide degradation that impacts its ecological role.


Assuntos
Actinobacteria/enzimologia , Amidoidrolases/metabolismo , Hidrazinas/metabolismo , Actinobacteria/classificação , Amidoidrolases/química , Amidoidrolases/genética , Sequência de Aminoácidos , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA