Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Chem Inf Model ; 61(6): 2766-2779, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34029462

RESUMO

In this study, a computational workflow is presented for grouping engineered nanomaterials (ENMs) and for predicting their toxicity-related end points. A mixed integer-linear optimization program (MILP) problem is formulated, which automatically filters out the noisy variables, defines the grouping boundaries, and develops specific to each group predictive models. The method is extended to the multidimensional space, by considering the ENM characterization categories (e.g., biological, physicochemical, biokinetics, image etc.) as different dimensions. The performance of the proposed method is illustrated through the application to benchmark data sets and comparison with alternative predictive modeling approaches. The trained models using the above data sets were made publicly available through a user-friendly web service.


Assuntos
Nanoestruturas , Nanoestruturas/toxicidade
2.
Small ; 16(21): e1906588, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32174008

RESUMO

Zeta potential is one of the most critical properties of nanomaterials (NMs) which provides an estimation of the surface charge, and therefore electrostatic stability in medium and, in practical terms, influences the NM's tendency to form agglomerates and to interact with cellular membranes. This paper describes a robust and accurate read-across model to predict NM zeta potential utilizing as the input data a set of image descriptors derived from transmission electron microscopy (TEM) images of the NMs. The image descriptors are calculated using NanoXtract (http://enaloscloud.novamechanics.com/EnalosWebApps/NanoXtract/), a unique online tool that generates 18 image descriptors from the TEM images, which can then be explored by modeling to identify those most predictive of NM behavior and biological effects. NM TEM images are used to develop a model for prediction of zeta potential based on grouping of the NMs according to their nearest neighbors. The model provides interesting insights regarding the most important similarity features between NMs-in addition to core composition the main elongation emerged, which links to key drivers of NM toxicity such as aspect ratio. Both the NanoXtract image analysis tool and the validated model for zeta potential (http://enaloscloud.novamechanics.com/EnalosWebApps/ZetaPotential/) are freely available online through the Enalos Nanoinformatics platform.

3.
Small ; 16(36): e2001080, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548897

RESUMO

This study presents the results of applying deep learning methodologies within the ecotoxicology field, with the objective of training predictive models that can support hazard assessment and eventually the design of safer engineered nanomaterials (ENMs). A workflow applying two different deep learning architectures on microscopic images of Daphnia magna is proposed that can automatically detect possible malformations, such as effects on the length of the tail, and the overall size, and uncommon lipid concentrations and lipid deposit shapes, which are due to direct or parental exposure to ENMs. Next, classification models assign specific objects (heart, abdomen/claw) to classes that depend on lipid densities and compare the results with controls. The models are statistically validated in terms of their prediction accuracy on external D. magna images and illustrate that deep learning technologies can be useful in the nanoinformatics field, because they can automate time-consuming manual procedures, accelerate the investigation of adverse effects of ENMs, and facilitate the process of designing safer nanostructures. It may even be possible in the future to predict impacts on subsequent generations from images of parental exposure, reducing the time and cost involved in long-term reproductive toxicity assays over multiple generations.


Assuntos
Daphnia , Aprendizado Profundo , Ecotoxicologia , Nanoestruturas , Animais , Simulação por Computador , Daphnia/efeitos dos fármacos , Ecotoxicologia/métodos , Nanoestruturas/toxicidade , Poluentes Químicos da Água/toxicidade
4.
J Chem Inf Model ; 58(3): 543-549, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281278

RESUMO

We present toxFlow, a web application developed for enrichment analysis of omics data coupled with read-across toxicity prediction. A sequential analysis workflow is suggested where users can filter omics data using enrichment scores and incorporate their findings into a correlation-based read-across technique for predicting the toxicity of a substance based on its analogs. Either embedded or in-house gene signature libraries can be used for enrichment analysis. The suggested approach can be used for toxicity prediction of diverse chemical entities; however, this article focuses on the multiperspective characterization of nanoparticles and selects their neighbors based on both physicochemical and biological similarity criteria. In addition, visualization options are offered to interactively explore correlation patterns in the data, whereas results can be exported for further analysis. toxFlow is accessible at http://147.102.86.129:3838/toxflow .


Assuntos
Biologia Computacional/métodos , Substâncias Perigosas/toxicidade , Internet , Nanopartículas/toxicidade , Software , Algoritmos , Bases de Dados Factuais , Humanos , Medição de Risco , Fluxo de Trabalho
5.
Comput Struct Biotechnol J ; 25: 47-60, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38646468

RESUMO

The rapid advance of nanotechnology has led to the development and widespread application of nanomaterials, raising concerns regarding their potential adverse effects on human health and the environment. Traditional (experimental) methods for assessing the nanoparticles (NPs) safety are time-consuming, expensive, and resource-intensive, and raise ethical concerns due to their reliance on animals. To address these challenges, we propose an in silico workflow that serves as an alternative or complementary approach to conventional hazard and risk assessment strategies, which incorporates state-of-the-art computational methodologies. In this study we present an automated machine learning (autoML) scheme that employs dose-response toxicity data for silver (Ag), titanium dioxide (TiO2), and copper oxide (CuO) NPs. This model is further enriched with atomistic descriptors to capture the NPs' underlying structural properties. To overcome the issue of limited data availability, synthetic data generation techniques are used. These techniques help in broadening the dataset, thus improving the representation of different NP classes. A key aspect of this approach is a novel three-step applicability domain method (which includes the development of a local similarity approach) that enhances user confidence in the results by evaluating the prediction's reliability. We anticipate that this approach will significantly expedite the nanosafety assessment process enabling regulation to keep pace with innovation, and will provide valuable insights for the design and development of safe and sustainable NPs. The ML model developed in this study is made available to the scientific community as an easy-to-use web-service through the Enalos Cloud Platform (www.enaloscloud.novamechanics.com/sabydoma/safenanoscope/), facilitating broader access and collaborative advancements in nanosafety.

6.
Mol Inform ; 42(8-9): e2300019, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37258455

RESUMO

In this study we present deimos, a computational methodology for optimal grouping, applied on the read-across prediction of engineered nanomaterials' (ENMs) toxicity-related properties. The method is based on the formulation and the solution of a mixed-integer optimization program (MILP) problem that automatically and simultaneously performs feature selection, defines the grouping boundaries according to the response variable and develops linear regression models in each group. For each group/region, the characteristic centroid is defined in order to allocate untested ENMs to the groups. The deimos MILP problem is integrated in a broader optimization workflow that selects the best performing methodology between the standard multiple linear regression (MLR), the least absolute shrinkage and selection operator (LASSO) models and the proposed deimos multiple-region model. The performance of the suggested methodology is demonstrated through the application to benchmark ENMs datasets and comparison with other predictive modelling approaches. However, the proposed method can be applied to property prediction of other than ENM chemical entities and it is not limited to ENMs toxicity prediction.


Assuntos
Nanoestruturas , Nanoestruturas/química , Modelos Lineares , Benchmarking
7.
Chemosphere ; 285: 131452, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34265725

RESUMO

Nanoinformatics models to predict the toxicity/ecotoxicity of nanomaterials (NMs) are urgently needed to support commercialization of nanotechnologies and allow grouping of NMs based on their physico-chemical and/or (eco)toxicological properties, to facilitate read-across of knowledge from data-rich NMs to data-poor ones. Here we present the first ecotoxicological read-across models for predicting NMs ecotoxicity, which were developed in accordance with ECHA's recommended strategy for grouping of NMs as a means to explore in silico the effects of a panel of freshly dispersed versus environmentally aged (in various media) Ag and TiO2 NMs on the freshwater zooplankton Daphnia magna, a keystone species used in regulatory testing. The dataset used to develop the models consisted of dose-response data from 11 NMs (5 TiO2 NMs of identical cores with different coatings, and 6 Ag NMs with different capping agents/coatings) each dispersed in three different media (a high hardness medium (HH Combo) and two representative river waters containing different amounts of natural organic matter (NOM) and having different ionic strengths), generated in accordance with the OECD 202 immobilization test. The experimental hypotheses being tested were (1) that the presence of NOM in the medium would reduce the toxicity of the NMs by forming an ecological corona, and (2) that environmental ageing of NMs reduces their toxicity compared to the freshly dispersed NMs irrespective of the medium composition (salt only or NOM-containing). As per the ECHA guidance, the NMs were grouped into two categories - freshly dispersed and 2-year-aged and explored in silico to identify the most important features driving the toxicity in each group. The final predictive models have been validated according to the OECD criteria and a QSAR model report form (QMRF) report included in the supplementary information to support adoption of the models for regulatory purposes.


Assuntos
Daphnia , Nanoestruturas , Animais , Ecotoxicologia
8.
Adv Biol (Weinh) ; 5(9): e2100637, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288601

RESUMO

The increasing exploitation of graphene-based materials (GBMs) is driven by their unique properties and structures, which ignite the imagination of scientists and engineers. At the same time, the very properties that make them so useful for applications lead to growing concerns regarding their potential impacts on human health and the environment. Since GBMs are inert to reaction, various attempts of surface functionalization are made to make them reactive. Herein, surface functionalization of GBMs, including those intentionally designed for specific applications, as well as those unintentionally acquired (e.g., protein corona formation) from the environment and biota, are reviewed through the lenses of nanotoxicity and design of safe materials (safe-by-design). Uptake and toxicity of functionalized GBMs and the underlying mechanisms are discussed and linked with the surface functionalization. Computational tools that can predict the interaction of GBMs behavior with their toxicity are discussed. A concise framing of current knowledge and key features of GBMs to be controlled for safe and sustainable applications are provided for the community.


Assuntos
Grafite , Coroa de Proteína , Grafite/toxicidade , Humanos
9.
Comput Struct Biotechnol J ; 18: 583-602, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226594

RESUMO

Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational 'safe-by-design' approaches to facilitate NM commercialization.

10.
Nanoscale Adv ; 1(9): 3485-3498, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36133569

RESUMO

In the present study, a novel read-across methodology for the prediction of toxicity related end-points of engineered nanomaterials (ENMs) is developed. The proposed method lies in the interface between the two main read-across approaches, namely the analogue and the grouping methods, and can employ a single criterion or multiple criteria for defining similarities among ENMs. The main advantage of the proposed method is that there is no need of defining a prior read-across hypothesis. Based on the formulation and the solution of a mathematical optimization problem, the method searches over a space of alternative hypotheses, and determines the one providing the most accurate read-across predictions. The procedure is automated and only two parameters are user-defined: the balance between the level of predictive accuracy and the number of predicted samples, and the similarity criteria, which define the neighbors of a target ENM.

11.
Nanoscale Adv ; 1(2): 706-718, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132268

RESUMO

Multi-walled carbon nanotubes are currently used in numerous industrial applications and products, therefore fast and accurate evaluation of their biological and toxicological effects is of utmost importance. Computational methods and techniques, previously applied in the area of cheminformatics for the prediction of adverse effects of chemicals, can also be applied in the case of nanomaterials (NMs), in an effort to reduce expensive and time consuming experimental procedures. In this context, a validated and predictive nanoinformatics model has been developed for the accurate prediction of the biological and toxicological profile of decorated multi-walled carbon nanotubes. The nanoinformatics workflow was fully validated according to the OECD principles before it was released online via the Enalos Cloud platform. The web-service is a ready-to-use, user-friendly application whose purpose is to facilitate decision making, as part of a safe-by-design framework for novel carbon nanotubes.

12.
Methods Mol Biol ; 1824: 113-138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30039404

RESUMO

In this chapter we present and discuss Enalos+ nodes designed and developed by NovaMechanics Ltd. for the open-source KNIME platform, as a useful aid when dealing with cheminformatics and nanoinformatics problems or medicinal applications. Enalos+ nodes facilitate tasks performed in molecular modeling and allow access, data mining, and manipulation for multiple chemical databases through the KNIME interface. Enalos+ nodes automate common procedures that greatly facilitate the rapid workflow prototyping within KNIME. Μethods and techniques that are included in Enalos+ nodes are presented in order to offer a deeper understanding of the theoretical background of the incorporated functionalities. An emphasis is given to demonstrate the usefulness of Enalos+ nodes in different cheminformatics applications by presenting four indicative case studies. Specifically, we present case studies that underline the value and the effectiveness of the nodes for molecular descriptors calculation and QSAR predictive model development. In addition, case studies are also presented demonstrating the benefits of the use of Enalos+ nodes for database exploitation within a drug discovery project.


Assuntos
Bases de Dados Factuais , Desenho de Fármacos , Modelos Moleculares , Software
13.
Methods Mol Biol ; 1800: 287-311, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29934899

RESUMO

In this chapter we present and discuss, with the aid of several representative case studies from drug discovery and computational toxicology, a new cheminformatics platform, Enalos Suite, that was developed with open source and freely available software. Enalos Suite ( http://enalossuite.novamechanics.com/ ) was designed and developed as a useful tool to address a variety of cheminformatics problems, given that it expedites tasks performed in predictive modeling and allows access, data mining and manipulation for multiple chemical databases (PubChem, UniChem, etc.). Enalos Suite was carefully designed to permit its extension and adjustment to the special field of interest of each user, including, for instance, nanoinformatics, biomedical, and other applications. To demonstrate the functionalities of Enalos Suite that are useful in different cheminformatics applications, we present indicative case studies that include the exploitation of chemical databases within a drug discovery project, the calculation of molecular descriptors, and finally the development of a predictive QSAR model validated according to OECD principles. We aspire that at the end of this chapter, the reader will capture the effectiveness of different functionalities included in the Enalos Suite that could be of significant value in a multitude of cheminformatics applications.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas/métodos , Software , Toxicologia/métodos , Animais , Mineração de Dados , Bases de Dados de Compostos Químicos , Bases de Dados Factuais , Humanos , Relação Quantitativa Estrutura-Atividade
14.
Food Chem Toxicol ; 110: 83-93, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28988138

RESUMO

Advances in the drug discovery research substantially depend on in silico methods and techniques that capitalize on experimental data to enable the accurate property/activity assessment by employing a variety of computational techniques. These in silico tools can significantly reduce expensive and time consuming experimental procedures required and are strongly recommended to avoid animal testing, especially as far as toxicity evaluation and risk assessment is concerned. In this context, in the present work we aim to develop a predictive model for the cytotoxic effects of a wide range of compounds based solely on calculated molecular descriptors that account for their topological, geometric and structural characteristics. The developed model was fully validated and was released online via Enalos Cloud platform accessible through http://enalos.insilicotox.com/MouseTox/. This ready-to-use web service offers, through a user-friendly interface, free access to the model results and therefore can act as a toxicity prediction tool for the risk assessment of novel compounds, without any special requirements or prior programming skills.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Internet , Camundongos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA