Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Anal Chem ; 94(51): 17770-17778, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36512439

RESUMO

The analysis of nanoparticle (NP) dynamics in live cell studies by video tracking provides detailed information on their interactions and trafficking in the cells. Although the video analysis is not yet routinely used in NP studies, the equipment suitable for the experiments is already available in most laboratories. Here, we compare trajectory patterns, diffusion coefficients, and particle velocities of NPs in A549 cells with a rather simple experimental setup consisting of a fluorescence microscope and openly available trajectory analysis software. The studied NPs include commercial fluorescent polymeric particles and two subpopulations of PC-3 cell-derived extracellular vesicles (EVs). As bioderived natural nanoparticles, the fluorescence intensities of the EVs limited the recording speed. Therefore, we studied the effect of the recording frame rate and analysis parameters to the trajectory results with bright fluorescent commercial NPs. We show that the trajectory classification and the apparent particle velocities are affected by the recording frame rate, while the diffusion constants stay comparable. The NP trajectory patterns were similar for all NP types and resembled intracellular vesicular transport. Interestingly, the EV movements were faster than the commercial NPs, which contrasts with their physical sizes and may indicate a greater role of the motor proteins in their intracellular transports.


Assuntos
Vesículas Extracelulares , Nanopartículas , Humanos , Células A549 , Microscopia de Fluorescência , Vesículas Extracelulares/metabolismo , Corantes Fluorescentes/metabolismo
2.
Small ; 18(17): e2106251, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212458

RESUMO

Amphiphilic gradient copolymers represent a promising alternative to extensively used block copolymers due to their facile one-step synthesis by statistical copolymerization of monomers of different reactivity. Herein, an in-depth analysis is provided of micelles based on amphiphilic gradient poly(2-oxazoline)s with different chain lengths to evaluate their potential for micellar drug delivery systems and compare them to the analogous diblock copolymer micelles. Size, morphology, and stability of self-assembled nanoparticles, loading of hydrophobic drug curcumin, as well as cytotoxicities of the prepared nanoformulations are examined using copoly(2-oxazoline)s with varying chain lengths and comonomer ratios. In addition to several interesting differences between the two copolymer architecture classes, such as more compact self-assembled structures with faster exchange dynamics for the gradient copolymers, it is concluded that gradient copolymers provide stable curcumin nanoformulations with comparable drug loadings to block copolymer systems and benefit from more straightforward copolymer synthesis. The study demonstrates the potential of amphiphilic gradient copolymers as a versatile platform for the synthesis of new polymer therapeutics.


Assuntos
Curcumina , Micelas , Curcumina/química , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química
3.
Bioconjug Chem ; 33(1): 206-218, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985282

RESUMO

Glyco-decorated spherical nucleic acids (SNAs) may be attractive delivery vehicles, emphasizing the sugar-specific effect on the outer sphere of the construct and at the same time hiding unfavorable distribution properties of the loaded oligonucleotides. As examples of such nanoparticles, tripodal sugar constituents of bleomycin were synthesized and conjugated with a fluorescence-labeled antisense oligonucleotide (AONARV7). Successive copper(I)-catalyzed azide-alkyne and strain-promoted alkyne-nitrone cycloadditions (SPANC) were utilized for the synthesis. Then, the glyco-AONARV7 conjugates were hybridized with complementary strands of a C60-based molecular spherical nucleic acid (i.e., a hybridization-mediated carrier). The formation and stability of these assembled glyco-decorated SNAs were evaluated by polyacrylamide gel electrophoresis (PAGE), UV melting profile analysis, and time-resolved fluorescence spectroscopy. Association constants were extracted from time-resolved fluorescence data. Preliminary cellular uptake experiments of the glyco-AONARV7 conjugates (120 nM solutions) and of the corresponding glyco-decorated SNAs (10 nM solutions) with human prostate cancer cells (PC3) showed an efficient uptake in each case. A marked variation in intracellular distribution was observed.


Assuntos
Ouro
4.
Photochem Photobiol Sci ; 21(9): 1677-1687, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35796875

RESUMO

For long-term live-cell fluorescence imaging and biosensing, it is crucial to work with a dye that has high fluorescence quantum yield and photostability without being detrimental to the cells. In this paper, we demonstrate that neutral boron-dipyrromethene (BODIPY)-based molecular rotors have great properties for high-light-dosage demanding live-cell fluorescence imaging applications that require repetitive illuminations. In molecular rotors, an intramolecular rotation (IMR) allows an alternative route for the decay of the singlet excited state (S1) via the formation of an intramolecular charge transfer state (CT). The occurrence of IMR reduces the probability of the formation of a triplet state (T1) which could further react with molecular oxygen (3O2) to form cytotoxic reactive oxygen species, e.g., singlet oxygen (1O2). We demonstrate that the oxygen-related nature of the phototoxicity for BODIPY derivatives can be significantly reduced if a neutral molecular rotor is used as a probe. The studied neutral molecular rotor probe shows remarkably lower phototoxicity when compared with both the non-rotating BODIPY derivative and the cationic BODIPY-based molecular rotor in different light dosages and dye concentrations. It is also evident that the charge and localization of the fluorescent probe are as significant as the IMR in terms of the phototoxicity in a long-term live-cell imaging.


Assuntos
Compostos de Boro , Boro , Compostos de Boro/química , Compostos de Boro/toxicidade , Sondas Moleculares , Oxigênio , Porfobilinogênio/análogos & derivados
5.
Bioconjug Chem ; 32(6): 1130-1138, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33998229

RESUMO

An azide-functionalized 12-armed Buckminster fullerene has been monosubstituted in organic media with a substoichiometric amount of cyclooctyne-modified oligonucleotides. Exposing the intermediate products then to the same reaction (i.e., strain-promoted alkyne-azide cycloaddition, SPAAC) with an excess of slightly different oligonucleotide constituents in an aqueous medium yields molecularly defined monofunctionalized spherical nucleic acids (SNAs). This procedure offers a controlled synthesis scheme in which one oligonucleotide arm can be functionalized with labels or other conjugate groups (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, DOTA, and Alexa-488 demonstrated), whereas the rest of the 11 arms can be left unmodified or modified by other conjugate groups in order to decorate the SNAs' outer sphere. Extra attention has been paid to the homogeneity and authenticity of the C60-azide scaffold used for the assembly of full-armed SNAs.


Assuntos
Fulerenos/química , Ácidos Nucleicos/química , Alcinos/química , Azidas/química , Catálise , Química Click , Cobre/química , Reação de Cicloadição
6.
Biomacromolecules ; 21(1): 73-88, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31500418

RESUMO

Combining multiple stimuli-responsive functionalities into the polymer design is an attractive approach to improve nucleic acid delivery. However, more in-depth fundamental understanding how the multiple functionalities in the polymer structures are influencing polyplex formation and stability is essential for the rational development of such delivery systems. Therefore, in this study the structure and dynamics of thermosensitive polyplexes were investigated by tracking the behavior of labeled plasmid DNA (pDNA) and polymer with time-resolved fluorescence spectroscopy using fluorescence resonance energy transfer (FRET). The successful synthesis of a heterofunctional poly(ethylene glycol) (PEG) macroinitiator containing both an atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) initiator is reported. The use of this novel PEG macroinitiator allows for the controlled polymerization of cationic and thermosensitive linear triblock copolymers and labeling of the chain-end with a fluorescent dye by maleimide-thiol chemistry. The polymers consisted of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), hydrophilic PEG (P), and cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, D) block, further referred to as NPD. Polymer block D chain-ends were labeled with Cy3, while pDNA was labeled with FITC. The thermosensitive NPD polymers were used to prepare pDNA polyplexes, and the effect of the N/P charge ratio, temperature, and composition of the triblock copolymer on the polyplex properties were investigated, taking nonthermosensitive PD polymers as the control. FRET was observed both at 4 and 37 °C, indicating that the introduction of the thermosensitive PNIPAM block did not compromise the polyplex structure even above the polymer's cloud point. Furthermore, FRET results showed that the NPD- and PD-based polyplexes have a less dense core compared to polyplexes based on cationic homopolymers (such as PEI) as reported before. The polyplexes showed to have a dynamic character meaning that the polymer chains can exchange between the polyplex core and shell. Mobility of the polymers allow their uniform redistribution within the polyplex and this feature has been reported to be favorable in the context of pDNA release and subsequent improved transfection efficiency, compared to nondynamic formulations.


Assuntos
DNA/química , Plasmídeos/genética , Polímeros/síntese química , Resinas Acrílicas/química , Carbocianinas/química , Transferência Ressonante de Energia de Fluorescência , Espectroscopia de Ressonância Magnética , Metacrilatos/química , Nylons/química , Polietilenoglicóis/química , Polimerização , Polímeros/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura
7.
Mol Pharm ; 15(5): 1964-1971, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29584954

RESUMO

Pharmaceutical scientists are increasingly interested in amorphous drug formulations especially because of their higher dissolution rates. Consequently, the thorough characterization and analysis of these formulations are becoming more and more important for the pharmaceutical industry. Here, fluorescence-lifetime-imaging microscopy (FLIM) was used to monitor the crystallization of an amorphous pharmaceutical compound, indomethacin. Initially, we identified different solid indomethacin forms, amorphous and γ- and α-crystalline, on the basis of their time-resolved fluorescence. All of the studied indomethacin forms showed biexponential decays with characteristic fluorescence lifetimes and amplitudes. Using this information, the crystallization of amorphous indomethacin upon storage in 60 °C was monitored for 10 days with FLIM. The progress of crystallization was detected as lifetime changes both in the FLIM images and in the fluorescence-decay curves extracted from the images. The fluorescence-lifetime amplitudes were used for quantitative analysis of the crystallization process. We also demonstrated that the fluorescence-lifetime distribution of the sample changed during crystallization, and when the sample was not moved between measuring times, the lifetime distribution could also be used for the analysis of the reaction kinetics. Our results clearly show that FLIM is a sensitive and nondestructive method for monitoring solid-state transformations on the surfaces of fluorescent samples.


Assuntos
Preparações Farmacêuticas/química , Química Farmacêutica/métodos , Cristalização/métodos , Composição de Medicamentos/métodos , Fluorescência , Cinética , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Solubilidade/efeitos dos fármacos , Análise Espectral Raman/métodos
8.
J Am Chem Soc ; 135(18): 6951-7, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23570657

RESUMO

Polymeric vectors for gene delivery are a promising alternative for clinical applications, as they are generally safer than viral counterparts. Our objective was to further our mechanistic understanding of polymer structure-function relationships to allow the rational design of new biomaterials. Utilizing poly(ß-amino ester)s (PBAEs), we investigated polymer-DNA binding by systematically varying the polymer molecular weight, adding single carbons to the backbone and side chain of the monomers that constitute the polymers, and varying the type of polymer end group. We then sought to correlate how PBAE binding affects the polyplex diameter and ζ potential, the transfection efficacy, and its associated cytotoxicity in human breast and brain cancer cells in vitro. Among other trends, we observed in both cell lines that the PBAE-DNA binding constant is biphasic with the transfection efficacy and that the optimal values of the binding constant with respect to the transfection efficacy are in the range (1-6) × 10(4) M(-1). A binding constant in this range is necessary but not sufficient for effective transfection.


Assuntos
Antineoplásicos/farmacologia , Carbono/química , DNA/química , Técnicas de Transferência de Genes , Vetores Genéticos/farmacologia , Polímeros/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Vetores Genéticos/química , Vetores Genéticos/genética , Humanos , Polímeros/síntese química , Polímeros/química , Relação Estrutura-Atividade
10.
Nanoscale Adv ; 4(1): 226-240, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36132960

RESUMO

Studies of extracellular vesicles (EVs), their trafficking and characterization often employ fluorescent labelling. Unfortunately, little attention has been paid thus far to a thorough evaluation of the purification of EVs after labelling, although the presence of an unbound dye may severely compromise the results or even lead to wrong conclusions on EV functionality. Here, we systematically studied five dyes for passive EV labelling and meticulously compared five typical purification methods: ultracentrifugation (UC), ultracentrifugation with discontinuous density gradient (UCG), ultrafiltration (UF), size exclusion chromatography (SEC), and anion exchange chromatography (AEC). A general methodology for evaluation of EV purification efficiency after the labelling was developed and tested to select the purification methods for the chosen dyes. Firstly, we found that some methods initially lead to high EV losses even in the absence of the dye. Secondly, the suitable purification method needs to be found for each particular dye and depends on the physical and chemical properties of the dye. Thirdly, we demonstrated that the developed parameter E rp (relative purification efficiency) is a useful tool for the pre-screening of the suitable dye-purification method combinations. Additionally, it was also shown that the labelled EVs properly purified from the unbound dye may show significantly reduced contrast and visibility in the target application, e.g. in the live cell fluorescence lifetime imaging.

11.
Chem Sci ; 12(21): 7504-7509, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34163841

RESUMO

Developing azobenzene photoswitches capable of selective and efficient photoisomerization by long-wavelength excitation is an enduring challenge. Herein, rapid isomerization from the Z- to E-state of two ortho-functionalized bistable azobenzenes with near-unity photoconversion efficiency was driven by triplet energy transfer upon red and near-infrared (up to 770 nm) excitation of porphyrin photosensitizers in catalytic micromolar concentrations. We show that the process of triplet-sensitized isomerization is efficient even when the sensitizer triplet energy is substantially lower (>200 meV) than that of the azobenzene used. This makes the approach applicable for a wide variety of sensitizer-azobenzene combinations and enables the expansion of excitation wavelengths into the near-infrared spectral range. Therefore, indirect excitation via endothermic triplet energy transfer provides efficient and precise means for photoswitching upon 770 nm near-infared light illumination with no chemical modification of the azobenzene chromophore, a desirable feature in photocontrollable biomaterials.

12.
Food Chem ; 318: 126511, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32126462

RESUMO

Interactions between taste compounds and nanofibrillar cellulose were studied. For this, a new fluorescent indicator displacement method was developed. Two fluorescent indicators, namely, Calcofluor white and Congo red, were chosen because of their specific binding to cellulose and intrinsic fluorescence. Seven taste compounds with different structures were successfully measured together with nanofibrillar cellulose (NFC) and ranked according to their binding constants. The most pronounced interactions were found between quinine and NFC (1.4 × 104 M-1), whereas sucrose, aspartame and glutamic acid did not bind at all. Naringin showed moderate binding while stevioside and caffeine exhibited low binding. The comparison with microcrystalline cellulose indicates that the larger surface area of nanofibrillated cellulose enables stronger binding between the binder and macromolecules. The developed method can be further utilized to study interactions of different compound classes with nanocellulose materials in food, pharmaceutical and dye applications, using a conventional plate reader in a high-throughput manner.


Assuntos
Celulose/metabolismo , Corantes Fluorescentes/química , Nanoestruturas/química , Aspartame/química , Aspartame/metabolismo , Benzenossulfonatos/química , Ligação Competitiva , Cafeína/metabolismo , Celulose/química , Vermelho Congo/química , Diterpenos do Tipo Caurano/metabolismo , Flavanonas/metabolismo , Glucosídeos/metabolismo , Espectrofotometria Ultravioleta , Paladar
13.
J Phys Chem Lett ; 11(1): 318-324, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31854990

RESUMO

Expanding the anti-Stokes shift for triplet-triplet annihilation upconversion (TTA-UC) systems with high quantum yields without compromising power density thresholds (Ith) remains a critical challenge in photonics. Our studies reveal that such expansion is possible by using a highly endothermic TTA-UC pair with an enthalpy difference of +80 meV even in a polymer matrix 1000 times more viscous than toluene. Carrying out efficient endothermic triplet-triplet energy transfer (TET) requires suppression of the reverse annihilator-to-sensitizer TET, which was achieved by using sensitizers with high molar extinction coefficients and long triplet state lifetimes as well as optimized annihilator concentrations. Under these conditions, the sensitizer-to-annihilator forward TET becomes effectively entropy driven, yielding upconversion quantum yields comparable to those achieved with the exothermic TTA-UC pair but with larger anti-Stokes shifts and even lower Ith, a previously unattained achievement.

14.
Acta Biomater ; 101: 327-343, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711900

RESUMO

In vitro cell culture models representing the physiological and pathological features of the outer retina are urgently needed. Artificial tissue replacements for patients suffering from degenerative retinal diseases are similarly in great demand. Here, we developed a co-culture system based solely on the use of human induced pluripotent stem cell (hiPSC)-derived cells. For the first time, hiPSC-derived retinal pigment epithelium (RPE) and endothelial cells (EC) were cultured on opposite sides of porous polylactide substrates prepared by breath figures (BF), where both surfaces had been collagen-coated by Langmuir-Schaefer (LS) technology. Small modifications of casting conditions during material preparation allowed the production of free-standing materials with distinct porosity, wettability and ion diffusion capacity. Complete pore coverage was achieved by the collagen coating procedure, resulting in a detectable nanoscale topography. Primary retinal endothelial cells (ACBRI181) and umbilical cord vein endothelial cells (hUVEC) were utilised as EC references. Mono-cultures of all ECs were prepared for comparison. All tested materials supported cell attachment and growth. In mono-culture, properties of the materials had a major effect on the growth of all ECs. In co-culture, the presence of hiPSC-RPE affected the primary ECs more significantly than hiPSC-EC. In consistency, hiPSC-RPE were also less affected by hiPSC-EC than by the primary ECs. Finally, our results show that the modulation of the porosity of the materials can promote or prevent EC migration. In short, we showed that the behaviour of the cells is highly dependent on the three main variables of the study: the presence of a second cell type in co-culture, the source of endothelial cells and the biomaterial properties. The combination of BF and LS methodologies is a powerful strategy to develop thin but stable materials enabling cell growth and modulation of cell-cell contact. STATEMENT OF SIGNIFICANCE: Artificial blood-retinal barriers (BRB), mimicking the interface at the back of the eye, are urgently needed as physiological and disease models, and for tissue transplantation targeting patients suffering from degenerative retinal diseases. Here, we developed a new co-culture model based on thin, biodegradable porous films, coated on both sides with collagen, one of the main components of the natural BRB, and cultivated endothelial and retinal pigment epithelial cells on opposite sides of the films, forming a three-layer structure. Importantly, our hiPSC-EC and hiPSC-RPE co-culture model is the first to exclusively use human induced pluripotent stem cells as cell source, which have been widely regarded as an practical candidate for therapeutic applications in regenerative medicine.


Assuntos
Colágeno/farmacologia , Células Epiteliais/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Epitélio Pigmentado da Retina/citologia , Adulto , Materiais Biocompatíveis/farmacologia , Técnicas de Cocultura , Impedância Elétrica , Humanos , Porosidade , Água
15.
Chem Commun (Camb) ; 54(99): 14029-14032, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30488910

RESUMO

A green-to-blue triplet-triplet annihilation upconversion of 24.5% quantum yield was achieved at a remarkably low 600 µM annihilator concentration in a viscous polymer matrix. This was made possible by utilizing a ZnTPP-based photosensitizer with exceptionally long 11 ms phosphorescence lifetime. Higher 3 mM annihilator concentration resulted in lower 24% upconversion quantum yield.

16.
Sci Rep ; 8(1): 14431, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258120

RESUMO

Halogen bonding between a carbazole-based, pyridine-substituted organic semiconductor and a common halogen-bond donor (pentafluoroiodobenzene) yields efficient halogen-bond-driven fluorescence modulation in solution. Steady-state, time-resolved emission and absorption spectroscopy as well as density functional theory studies demonstrate that the fluorescence modulation arises from halogen-bond-induced intramolecular charge transfer. Fluorescence modulation offers a range of possibilities both in solution and in the solid state, for instance providing a potential pathway for the design of tunable luminescent materials for light-emitting devices.

17.
Acta Biomater ; 54: 138-149, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28223209

RESUMO

Age-related macular degeneration (AMD) is the leading cause of vision loss in senior citizens in the developed world. The disease is characterised by the degeneration of a specific cell layer at the back of the eye - the retinal pigment epithelium (RPE), which is essential in retinal function. The most promising therapeutic option to restore the lost vision is considered to be RPE cell transplantation. This work focuses on the development of biodegradable biomaterials with similar properties to the native Bruch's membrane as carriers for RPE cells. In particular, the breath figure (BF) method was used to create semi-permeable microporous films, which were thereafter used as the substrate for the consecutive Langmuir-Schaefer (LS) deposition of highly organised layers of collagen type I and collagen type IV. The newly developed biomaterials were further characterised in terms of surface porosity, roughness, hydrophilicity, collagen distribution, diffusion properties and hydrolytic stability. Human embryonic stem cell-derived RPE cells (hESC-RPE) cultured on the biomaterials showed good adhesion, spreading and morphology, as well as the expression of specific protein markers. Cell function was additionally confirmed by the assessment of the phagocytic capacity of hESC-RPE. Throughout the study, microporous films consistently showed better results as cell culture materials for hESC-RPE than dip-coated controls. This work demonstrates the potential of the BF-LS combined technologies to create biomimetic prosthetic Bruch's membranes for hESC-RPE transplantation. STATEMENT OF SIGNIFICANCE: Age-related macular degeneration (AMD) is a leading cause of central blindness in developed countries, associated with the degeneration of the retinal pigment epithelium (RPE), a specific cell layer at the back of the eye. Transplantation of RPE cells derived from stem cells is considered the best option to treat these patients. In this work, we developed a cell carrier for human embryonic stem cell-derived RPE that resembled the upper layers of the membrane that naturally supports the RPE cells in the retina. The new combination of technologies employed in this study resulted in very promising materials as confirmed by our studies on cell proliferation, morphology and function.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Membranas Artificiais , Epitélio Pigmentado da Retina/metabolismo , Engenharia Tecidual/métodos , Linhagem Celular , Células-Tronco Embrionárias Humanas/patologia , Células-Tronco Embrionárias Humanas/transplante , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/terapia , Porosidade , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/transplante
18.
Eur J Pharm Sci ; 103: 122-127, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28330769

RESUMO

Electrostatic polymer-DNA complexes (polyplexes) have been widely investigated for DNA delivery, and remarkable differences in transfection efficacy have been seen among the materials. For example, polyethyleneimine (PEI) mediates DNA transfection more effectively than poly(l-lysine) (PLL). Biophysical properties of the polyplexes may explain their different properties in gene delivery. We investigated the structural dynamics in DNA polyplexes, especially the material exchange between the core and shell regions of the PEI and PLL polyplexes. Steady-state fluorescence spectroscopy and double labeling based fluorescence resonance energy transfer (FRET) techniques were used to study the DNA polyplexes. According to our results there is a clear difference between these two polymers: core exchange takes place in PEI but not in PLL polyplexes. Such differences in structural dynamics of polyplexes explain, at least partly, the differences in DNA release and transfection efficacy at cellular level.


Assuntos
DNA/química , Polietilenoimina/química , Polilisina/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Peso Molecular , Plasmídeos , Eletricidade Estática
19.
J Phys Chem B ; 121(48): 10782-10792, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116794

RESUMO

Structural dynamics of the polyethylenimine-DNA and poly(l-lysine)-DNA complexes (polyplexes) was studied by steady-state and time-resolved fluorescence spectroscopy using the fluorescence resonance energy transfer (FRET) technique. During the formation of the DNA polyplexes, the negative phosphate groups (P) of DNA are bound by the positive amine groups (N) of the polymer. At N/P ratio 2, nearly all of the DNA's P groups are bound by the polymer N groups: these complexes form the core of the polyplexes. The excess polymer, added to this system to increase the N/P ratio to the values giving efficient gene delivery, forms a positively charged shell around the core polyplex. We investigated whether the exchange between the core and shell regions of PEI and PLL polyplexes takes place. Our results demonstrated a clear difference between the two studied polymers. Shell PEI can replace PEIs previously attached to DNA in the polyplex core, while PLL cannot. Such a dynamic structure of PEI polyplexes compared to a more static one found for PLL polyplexes partially explains the observed difference in the DNA transfection efficiency of these polyplexes. Moreover, the time-resolved fluorescence spectroscopy revealed additional details on the structure of PLL polyplexes: in between the core and shell, there is an intermediate layer where both core and shell PLLs or their parts overlap.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Polietilenoimina/química , Polilisina/química , Estrutura Molecular , Espectrometria de Fluorescência , Fatores de Tempo
20.
J Control Release ; 220(Pt B): 727-37, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26390807

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are naturally occurring membrane particles that mediate intercellular communication by delivering molecular information between cells. In this study, we investigated the effectiveness of two different populations of EVs (microvesicle- and exosome-enriched) as carriers of Paclitaxel to autologous prostate cancer cells. METHODS: EVs were isolated from LNCaP- and PC-3 prostate cancer cell cultures using differential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and Western blot. The uptake of microvesicles and exosomes by the autologous prostate cancer cells was assessed by flow cytometry and confocal microscopy. The EVs were loaded with Paclitaxel and the effectiveness of EV-mediated drug delivery was assessed with viability assays. The distribution of EVs and EV-delivered Paclitaxel in cells was inspected by confocal microscopy. RESULTS: Our main finding was that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect. This capacity was independent of the EV population and the cell line tested. Although the EVs without the drug increased cancer cell viability, the net effect of enhanced cytotoxicity remained. Both EV populations delivered Paclitaxel to the recipient cells through endocytosis, leading to the release of the drug from within the cells. The removal of EV surface proteins did not affect exosomes, while the drug delivery mediated by microvesicles was partially inhibited. CONCLUSIONS: Cancer cell-derived EVs can be used as effective carriers of Paclitaxel to their parental cells, bringing the drug into the cells through an endocytic pathway and increasing its cytotoxicity. However, due to the increased cell viability, the use of cancer cell-derived EVs must be further investigated before any clinical applications can be designed.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Micropartículas Derivadas de Células/metabolismo , Portadores de Fármacos , Endocitose , Exossomos/metabolismo , Paclitaxel/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/química , Química Farmacêutica , Relação Dose-Resposta a Droga , Exossomos/química , Humanos , Masculino , Nanopartículas , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/metabolismo , Fenótipo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA