Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 116(6): 1600-1616, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37733751

RESUMO

The first draft of the Arabidopsis genome was released more than 20 years ago and despite intensive molecular research, more than 30% of Arabidopsis genes remained uncharacterized or without an assigned function. This is in part due to gene redundancy within gene families or the essential nature of genes, where their deletion results in lethality (i.e., the dark genome). High-throughput plant phenotyping (HTPP) offers an automated and unbiased approach to characterize subtle or transient phenotypes resulting from gene redundancy or inducible gene silencing; however, access to commercial HTPP platforms remains limited. Here we describe the design and implementation of OPEN leaf, an open-source phenotyping system with cloud connectivity and remote bilateral communication to facilitate data collection, sharing and processing. OPEN leaf, coupled with our SMART imaging processing pipeline was able to consistently document and quantify dynamic changes at the whole rosette level and leaf-specific resolution when plants experienced changes in nutrient availability. Our data also demonstrate that VIS sensors remain underutilized and can be used in high-throughput screens to identify and characterize previously unidentified phenotypes in a leaf-specific time-dependent manner. Moreover, the modular and open-source design of OPEN leaf allows seamless integration of additional sensors based on users and experimental needs.


Assuntos
Arabidopsis , Arabidopsis/genética , Computação em Nuvem , Fenótipo , Folhas de Planta/genética , Plantas
2.
Planta ; 259(4): 80, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436711

RESUMO

MAIN CONCLUSION: This review has explored the importance of using a synergistic approach of nano-elicitation and hydroponics to improve plant growth and metabolite production. Furthermore, it emphasizes the significance of green nanotechnology and eco-friendly practices while utilizing this approach to promote the development of a sustainable agriculture system. Nano-elicitation stimulates metabolic processes in plants using nanoparticles (NPs) as elicitors. The stimulation of these biochemical processes can enhance plant yield and productivity, along with the production of secondary metabolites. Nanoparticles have garnered the attention of scientific community because of their unique characteristics, such as incredibly small size and large surface-to-volume ratio, which make them effective elicitors. Hydroponic systems, which optimize growing conditions to increase plant production, are typically used to study the effect of elicitors. By integrating these two approaches, the qualitative and quantitative output of plants can be increased while employing minimal resources. As the global demand for high-quality crops and bioactive compounds surges, embracing this synergistic approach alongside sustainable farming practices can pave the way for resilient agricultural systems, ensuring food security and fostering an eco-friendly environment.


Assuntos
Agricultura , Produtos Agrícolas , Metabolismo Secundário , Hidroponia , Fazendas
3.
Appl Environ Microbiol ; : e0067224, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940566

RESUMO

This study performed microbial analysis of nutrient film technique (NFT) hydroponic systems on three indoor farms in Singapore (the "what"). To justify the necessity of sanitizing hydroponic systems, strong biofilm-forming bacteria were isolated from the facility and investigated for their influence on Salmonella colonization on polyvinyl chloride (PVC) coupons in hydroponic nutrient solutions (the "why"). Finally, sanitization solutions were evaluated with both laboratory-scale and field-scale tests (the "how"). As a result, the microbiome composition in NFT systems was found to be highly farm specific. The strong biofilm formers Corynebacterium tuberculostearicum C2 and Pseudoxanthomonas mexicana C3 were found to facilitate the attachment and colonization of Salmonella on PVC coupons. When forming dual-species biofilms, the presence of C2 and C3 also significantly promoted the growth of Salmonella (P < 0.05). Compared with hydrogen peroxide (H2O2) and sodium percarbonate (SPC), sodium hypochlorite (NaOCl) exhibited superior efficacy in biofilm removal. At 50 ppm, NaOCl reduced the Salmonella Typhimurium, C2, and C3 counts to <1 log CFU/cm2 within 12 h, whereas neither 3% H2O2 nor 1% SPC achieved this effect. In operational hydroponic systems, the concentration of NaOCl needed to achieve biofilm elimination increased to 500 ppm, likely due to the presence of organic matter accumulated during crop cultivation and the greater persistence of naturally formed multispecies biofilms. Sanitization using 500 ppm NaOCl for 12 h did not impede subsequent plant growth, but chlorination byproduct chlorate was detected at high levels in the hydroponic solution and in plants in the sanitized systems without rinsing. IMPORTANCE: This study's significance lies first in its elucidation of the necessity of sanitizing hydroponic farming systems. The microbiome in hydroponic systems, although mostly nonpathogenic, might serve as a hotbed for pathogen colonization and thus pose a risk for food safety. We thus explored sanitization solutions with both laboratory-scale and field-scale tests. Of the three tested sanitizers, NaOCl was the most effective and economical option, whereas one must note the vital importance of rinsing the hydroponic systems after sanitization with NaOCl.

4.
Physiol Plant ; 176(4): e14435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036950

RESUMO

This study examined how the nutrient flow environment affects lettuce root morphology in hydroponics using multi-omics analysis. The results indicate that increasing the nutrient flow rate initially increased indicators such as fresh root weight, root length, surface area, volume, and average diameter before declining, which mirrors the trend observed for shoot fresh weight. Furthermore, a high-flow environment significantly increased root tissue density. Further analysis using Weighted Gene Co-expression Network Analysis (WGCNA) and Weighted Protein Co-expression Network Analysis (WPCNA) identified modules that were highly correlated with phenotypes and hormones. The analysis revealed a significant enrichment of hormone signal transduction pathways. Differences in the expression of genes and proteins related to hormone synthesis and transduction pathways were observed among the different flow conditions. These findings suggest that nutrient flow may regulate hormone levels and signal transmission by modulating the genes and proteins associated with hormone biosynthesis and signaling pathways, thereby influencing root morphology. These findings should support the development of effective methods for regulating the flow of nutrients in hydroponic contexts.


Assuntos
Hidroponia , Lactuca , Reguladores de Crescimento de Plantas , Raízes de Plantas , Transdução de Sinais , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Lactuca/genética , Lactuca/metabolismo , Lactuca/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Nutrientes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Multiômica
5.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38533661

RESUMO

AIMS: This study explored the effects of slightly acidic electrolyzed water (SAEW) on algae to exploit technologies that effectively suppress algal growth in hydroponic systems and improve crop yield. METHODS AND RESULTS: The effects of SAEW on algal growth and the response mechanisms of algae to SAEW were investigated. Moreover, we studied whether the application of SAEW adversely affected tomato seedling growth. The results showed that SAEW significantly inhibited algal growth and destroyed the integrity of the algal cells. In addition, the intracellular oxidation-reduction system of algae was greatly influenced by SAEW. The H2O2, O2-, malondialdehyde (MDA), and reactive oxygen species (ROS) fluorescence signals were significantly induced by SAEW, and superoxide dismutase (SOD), peroxidase (POD), and glutathione reductase (GR) activities were greatly enhanced by a low SAEW concentration but significantly inhibited by SAEW with a high available chlorine concentration, which may contribute to heavy oxidative stress on algal growth and cell structure break down, eventually causing the death of algae and cell number decrease. We also found that regardless of the concentration of SAEW (from 10 to 40 mg L-1), there was no significant change in the germination index, length, or fresh weight of the hydroponic tomato seedlings. CONCLUSIONS: Our findings demonstrate that SAEW can be used in hydroponic systems to restrain algae with no negative impact on tomato plants.


Assuntos
Peróxido de Hidrogênio , Hidroponia , Microalgas , Solanum lycopersicum , Água , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Peróxido de Hidrogênio/metabolismo , Água/metabolismo , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Eletrólise , Superóxido Dismutase/metabolismo , Glutationa Redutase/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Clorofíceas/efeitos dos fármacos , Clorofíceas/crescimento & desenvolvimento , Oxirredução
6.
Plant Dis ; 108(1): 131-138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37536345

RESUMO

Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most devastating diseases affecting the canola/oilseed rape (Brassica napus) industry worldwide. Currently, the planting of clubroot-resistant (CR) cultivars is the most effective strategy used to restrict the spread and the economic losses linked to the disease. However, virulent P. brassicae isolates have been able to infect many of the currently available CR cultivars, and the options to manage the disease are becoming limited. Another challenge has been achieving consistency in evaluating host reactions to P. brassicae infection, with most bioassays conducted in soil and/or potting medium, which requires significant space and can be labor intensive. Visual scoring of clubroot symptom development can also be influenced by user bias. Here, we have developed a hydroponic bioassay using well-characterized P. brassicae single-spore isolates representative of clubroot virulence in Canada, as well as field isolates from three Canadian provinces in combination with canola inbred homozygous lines carrying resistance genetics representative of CR cultivars available to growers in Canada. To improve the efficiency and consistency of disease assessment, symptom severity scores were compared with clubroot evaluations based on the scanned root area. According to the results, this bioassay offers a reliable, less expensive, and reproducible option to evaluate P. brassicae virulence, as well as to identify which canola resistance profile(s) may be effective against particular isolates. This bioassay will contribute to the breeding of new CR canola cultivars and the identification of virulence genes in P. brassicae that could trigger resistance and that have been very elusive to this day.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Brassica napus , Plasmodioforídeos , Plasmodioforídeos/genética , Hidroponia , Canadá , Melhoramento Vegetal , Brassica napus/parasitologia
7.
Int J Phytoremediation ; 26(9): 1379-1382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437154

RESUMO

Toxic metals and metalloids, especially from anthropogenic sources, now pollute substantial areas of our planet. Phytoextraction is a proven technology with the potential to reduce metal/metalloid pollution, and where financially viable, recover valuable metals ('phytomining'). Toward these aims, there has been a surge of publications over the last two decades. While important progress is being made, ongoing propagation of poor practice, and the resultant drain from funding sources, is hindering this promising research area. This includes mis-ascribing hyperaccumulator species, hydroponics with extremely high dose levels, misuse of Bioconcentration Factors, use of food or biomass crops with low accumulation for phytoextraction, the phenomenon of 'template papers' in which a known hyperaccumulator for element X is dosed with element Y, or a common weed species dosed with any variety of elements to make it 'hyperaccumulate'. Here we highlight these misconceptions with the hope that this will help to: (i) disseminate accurate definitions for in planta metal accumulation; (ii) quash the propagation of poor practice by limiting the inflation of unnecessary publications via the practice of 'template paper' writing; (iii) be used by journal editors and reviewers to validate their reasoning to authors; and (iv) contribute to faster progress in delivering this technology to in-the-field practitioners.


In this note, we highlight some common misconceptions with the hope that this will help to disseminate accurate definitions for hyperaccumulation, promote the appropriate use of hydroponics, and limit template paper writing.


Assuntos
Biodegradação Ambiental , Poluentes do Solo/metabolismo , Terminologia como Assunto , Metais/metabolismo , Plantas/metabolismo
8.
J Environ Manage ; 353: 120208, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301481

RESUMO

Aquaponics is an integrated food production system that intensively produces a diverse array of seafood and specialty crops in one closed-loop system, which is a potential solution to global challenges of food security. While current aquaponics systems are commonly operated with freshwater, marine aquaponics is an emerging opportunity to grow saltwater animals and plants. Although marine aquaponics can reduce the dependence on freshwater for food production, its environmental sustainability has not been systematically studied. This paper presents the first life cycle assessment (LCA) on a marine aquaponic production system growing shrimp and three halophytes. The system assessed covered from shrimp larvae nursery to grow-out. The effects of salinity, carbon/nitrogen (C/N) ratio and shrimp-to-plant stocking density ratio of aquaponics on its midpoint and endpoint environmental impacts were evaluated using a functional unit based on the economic value of the four products. Electricity use for aquaponic operation was the environmental hotspot, contributing ∼90 % to all the midpoint impacts. The system produced higher environmental impacts when operated at higher salinity, but lower C/N ratio and stocking density. Replacing fossil fuel with wind power for electricity generation can decrease the environmental impacts by 95-99 %. Variation in the shrimp price can change the impacts by up to 62 %. This study provides a useful tool to help marine aquaponic farmers improve their production from an environmental perspective, and can serve as groundwork for further assessing more marine aquaponic systems with different animal-plant combinations.


Assuntos
Aquicultura , Produtos Agrícolas , Animais , Hidroponia , Nitrogênio , Alimentos Marinhos , Estágios do Ciclo de Vida
9.
Physiol Mol Biol Plants ; 30(6): 1021-1027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974355

RESUMO

Carthamus tinctorius L. (Safflower) is an important oilseed crop that is cultivated globally. Aphids are a serious pest of safflower and cause significant yield losses of up to 80% due to their ability to multiply rapidly by parthenogenesis. In this study, we report the identification of an aphid-tolerant accession in safflower following screening of a representative global germplasm collection of 327 accessions from 37 countries. Field-based screening methods gave inconsistent and ambiguous results for aphid tolerance between natural and controlled infestation assays and required ~ 3 months for completion. Therefore, we used a rapid, high-throughput hydroponics-based assay system that allows phenotyping of aphid tolerance/susceptibility in a large number of plants in a limited area, significantly reduces the time required to ~ 45 days and avoids inconsistencies observed in field-based studies. We identified one accession out of the 327 tested germplasm lines that demonstrated aphid tolerance in field-based natural and controlled infestation studies and also using the hydroponics approach. Inheritance analysis of the trait was conducted using the hydroponics approach on F1 and F2 progeny generated from a cross between the tolerant and susceptible lines. Aphid-tolerance was observed to be a dominant trait governed by a single locus/gene that can be mobilized after mapping into cultivated varieties of safflower. The hydroponics-based assay described in this study would be very useful for studying the molecular mechanism of aphid-tolerance in safflower and can also be used for bioassays in several other crops that are amenable to hydroponics-based growth. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01467-0.

10.
New Phytol ; 238(4): 1711-1721, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764923

RESUMO

Several plant species have been reported to inhibit nitrification via their root exudates, the so-called biological nitrification inhibition (BNI). Given the potential of BNI-producing plants to sustainably mitigate N losses in agrosystems, identification of BNI activity in existing germplasms is of paramount importance. A hydroponic system was combined with an optimized Nitrosomonas europaea-based bioassay to determine the BNI activity of root exudates. The pipeline allows collecting and processing hundreds of root exudates simultaneously. An additional assay was established to assess the potential bactericide effect of the root exudates. The pipeline was used to unravel the impact of developmental stage, temperature and osmotic stress on the BNI trait in selected wheat genotypes. Biological nitrification inhibition activity appeared consistently higher in wheat at the pretillering stage as compared to the tillering stage. While low-temperatures did not alter BNI activities in root exudates, osmotic stress appeared to change the BNI activity in a genotype-dependent manner. Further analysis of Nitrosomonas culture after pre-exposure to root exudates suggested that BNI activity has no or limited bactericide effects. The present pipeline will be instrumental to further investigating the dynamics of BNI activity and to uncover the diversity of the BNI trait in plant species.


Assuntos
Nitrificação , Triticum , Triticum/genética , Hidroponia , Plantas , Genótipo
11.
Environ Res ; 222: 115313, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709025

RESUMO

Agriculture is a very important economic sector that contributes to a nation's overall economic development. According to the UN Food and Agriculture Organization, with a rising population, the cereals demand will reach 3 billion tons by 2050. Also, the mission of Sustainable Development Goals (SDGs) is to provide zero hunger and sustainable agriculture by 2030. With a simultaneous decline in cultivable land and water scarcity, food production has to increase in order to achieve the above mission. Vertical farming is a current state of art agriculture technology to increase crop yield per unit area. This work focuses on designing and constructing an IoT-enabled smart vertical farming system with a controlled environment for plant growth. This system uses the hydroponic Deep Flow Technique (DFT), various sensors, and an auto pH and Total Dissolved Solids (TDS) balancing system. This paper provides a comparative analysis of IoT-based controlled environment vertical farming setup with the uncontrolled setup for Romaine lettuce in terms of plant growth parameters like plant height, maximum leaf length, maximum leaf width, and fresh and dry weight of the plant. The observed fresh weight of the aerial part for automated and unautomated setup is found to be 58.66 g and 48.81 g respectively. Also, the chemical analysis showed the plants possess the required optimum range of micro and macronutrients for both setups. The macronutrient results obtained for the controlled/automated (A setup), and uncontrolled/unautomated setup (U setup for Phosphorus (P), and Potassium (K) are (PA, PU) (5.91 g/Kg, 6.06 g/Kg), and (KA, KU) (67.03 g/Kg, 74.01 g/Kg) respectively.


Assuntos
Agricultura , Ambiente Controlado , Hidroponia/métodos , Fazendas , Agricultura/métodos , Tecnologia
12.
Environ Res ; 219: 115020, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521539

RESUMO

Hydroponic effluent (HE) contains a reasonable amount of residual nutrients. Therefore, HE could be used as a low-cost growth media for microalgae mediated resource recovery and water recycling. However, the presence of root exudates (particularly, benzoic acid) may lead to toxicity in microalgae.In the present study, the allelopathic effects of benzoic acid on microalgal growth was tested. During 96 h batch growth, Chlorella pyrenoidosa showed the highest biomass concentration (0.064-0.037 g.L-1) compared to Chlorella sorokiniana (0.09-0.26 g.L-1) at the tested benzoic acid doses. Moreover, both the species showed growth stimulation and growth inhibition up to certain benzoic acid doses. Hence, both the microalgal species showed allelopathic behaviour at different doses of benzoic acid. Further, the observed half effective concentration (96 h EC50) were 65.10 mg.L-1 and 105.27 mg.L-1, respectively, for Chlorella pyrenoidosa and C. sorokiniana with 95% confidence limits. Further, Haldane's model best fitted with experimental data of both the microalgae (r âˆ¼ 0.99). Overall, the study reveals that the HE with low benzoic acid dose may serve as a suitable growth media for microalgae. However, further in-depth research interventions using real HE are desirable to determine its real-world applicability.


Assuntos
Chlorella , Microalgas , Águas Residuárias , Hidroponia , Água , Biomassa
13.
Chem Biodivers ; 20(4): e202201076, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36815541

RESUMO

Nowadays, light-emitting diodes (LED) provide an alternative source to sunlight with specific intensity and wavelength that promotes plant growth. The features offered by LED could also stimulate the production of secondary metabolites of pharmaceutical interest. This work analyzed the cultivation of oregano (Lippia palmeri S. Watson) in a floating root hydroponic system supplemented by full-spectrum LED artificial light. Growth indicators like height, diameter, number of shoots, and leaf length and width were measured. The essential oil (EO) composition from the leaves of wild and hydroponic conditions found thymol (41.8 %) as the main product for the former and carvacrol (47 %) in hydroponics. The antiproliferative activity of EOs on human colorectal cancer HCT-15 shows that 6.4 µg/ml for hydroponic and 7.4 µg/ml for the wild plant reduce more than 50 % the cell viability. Overall, this study indicates that hydroponic conditions and full spectrum LED modifies the composition of the EO of L. palmeri on compared with the wild plant, which effectively induces cell growth inhibition in human colorectal cancer.


Assuntos
Neoplasias Colorretais , Lippia , Óleos Voláteis , Origanum , Humanos , Hidroponia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Origanum/química , Folhas de Planta , Óleos de Plantas/farmacologia
14.
Sensors (Basel) ; 23(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050764

RESUMO

Traditional agricultural methods, which are still adopted today, depend on many factors. Food production processes face serious risks, such as limited clean water resources and supplements such as phosphorus, in addition to weather conditions due to climate change, the distribution of pests and soil-borne diseases, and increasing demand due to population growth, which can lead to famine. In particular, there may be cases where the soil nutrient content is insufficient and the soil structure is not suitable for cultivation. Therefore, soilless farming techniques have become popular, where the producer is entirely in control of the process. Additionally, many factors affect conventional farming techniques, including restrictions on land suitable for agriculture, climate-increased transportation costs from production areas to central regions, and environmental sanctions. Therefore, soilless farming techniques and the use of technology have rapidly gained importance. The use of technology has two crucial parameters: hardware and software. Today, no device can simultaneously control the electrical conductivity, pH, dissolved oxygen, and temperature of the solution in systems cultivated with soilless farming techniques. The present study was conducted to find a solution to the needs in this area. An automatic control system was developed and tested, employing a microcontroller, various sensors, appropriate open-source codes, and original software. Electrical conductivity (EC), power of hydrogen (pH), dissolved oxygen (DO), and temperature (T) values were determined successfully by the developed control system. The area where the experiment was conducted is a fully controlled and closed area established within Ankara University. The ambient temperature was 22 °C and the humidity was 39%. The coordinates of the experimental area are 39.962013 and 32.867491. Three different artificial lighting intensities (165.6 µmol m-2 s-1, 248.4 µmol m-2 s-1, and 331.2 µmol m-2 s-1) and a desired photoperiod duration can be applied to the site.


Assuntos
Agricultura , Solo , Humanos , Agricultura/métodos , Tecnologia , Software , Oxigênio
15.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850471

RESUMO

Smart sensing devices enabled hydroponics, a concept of vertical farming that involves soilless technology that increases green area. Although the cultivation medium is water, hydroponic cultivation uses 13 ± 10 times less water and gives 10 ± 5 times better quality products compared with those obtained through the substrate cultivation medium. The use of smart sensing devices helps in continuous real-time monitoring of the nutrient requirements and the environmental conditions required by the crop selected for cultivation. This, in turn, helps in enhanced year-round agricultural production. In this study, lettuce, a leafy crop, is cultivated with the Nutrient Film Technique (NFT) setup of hydroponics, and the growth results are compared with cultivation in a substrate medium. The leaf growth was analyzed in terms of cultivation cycle, leaf length, leaf perimeter, and leaf count in both cultivation methods, where hydroponics outperformed substrate cultivation. The results of the 'AquaCrop simulator also showed similar results, not only qualitatively and quantitatively, but also in terms of sustainable growth and year-round production. The energy consumption of both the cultivation methods is compared, and it is found that hydroponics consumes 70 ± 11 times more energy compared to substrate cultivation. Finally, it is concluded that smart sensing devices form the backbone of precision agriculture, thereby multiplying crop yield by real-time monitoring of the agronomical variables.


Assuntos
Conservação de Recursos Energéticos , Lactuca , Hidroponia , Fenômenos Físicos , Água
16.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447788

RESUMO

Microgreens have gained attention for their exceptional culinary characteristics and high nutritional value. The present study focused on a novel approach for investigating the easy extraction of plant samples and the utilization of immersible silicon photonic sensors to determine, on the spot, the nutrient content of microgreens and their optimum time of harvest. For the first time, it was examined how these novel sensors can capture time-shifting spectra caused by the molecules' dynamic adhesion onto the sensor surface. The experiment involved four types of microgreens (three types of basil and broccoli) grown in a do-it-yourself hydroponic installation. The sensors successfully distinguished between different plant types, showcasing their discriminative capabilities. To determine the optimum harvest time, this study compared the sensor data with results obtained through standard analytical methods. Specifically, the total phenolic content and antioxidant activity of two basil varieties were juxtaposed with the sensor data, and this study concluded that the ideal harvest time for basil microgreens was 14 days after planting. This finding highlights the potential of the immersible silicon photonic sensors for potentially replacing time-consuming analytical techniques. By concentrating on obtaining plant extracts, capturing time-shifting spectra, and assessing sensor reusability, this research paves the way for future advancements in urban farming.


Assuntos
Brassica , Silício , Estudos de Viabilidade , Antioxidantes , Nutrientes
17.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175475

RESUMO

Korean ginseng is a source of functional foods and medicines; however, its productivity is hindered by abiotic stress factors, such as light. This study investigated the impacts of darkness and different light wavelengths on the metabolomics and anti-cancer activity of ginseng extracts. Hydroponically-grown Korean ginseng was shifted to a light-emitting diodes (LEDs) chamber for blue-LED and darkness treatments, while white fluorescent (FL) light treatment was the control. MCF-7 breast cancer and lipopolysaccharide (LPS)-induced BV-2 microglial cells were used to determine chemo-preventive and neuroprotective potential. Overall, 53 significant primary metabolites were detected in the treated samples. The levels of ginsenosides Rb1, Rb2, Rc, Rd, and Re, as well as organic and amino acids, were significantly higher in the dark treatment, followed by blue-LED treatment and the FL control. The dark-treated ginseng extract significantly induced apoptotic signaling in MCF-7 cells and dose-dependently inhibited the NF-κB and MAP kinase pathways in LPS-induced BV-2 cells. Short-term dark treatment increased the content of Rd, Rc, Rb1, Rb2, and Re ginsenosides in ginseng extracts, which promoted apoptosis of MCF-7 cells and inhibition of the MAP kinase pathway in BV-2 microglial cells. These results indicate that the dark treatment might be effective in improving the pharmacological potential of ginseng.


Assuntos
Ginsenosídeos , Panax , Humanos , Ginsenosídeos/uso terapêutico , Extratos Vegetais/química , Panax/química , Células MCF-7 , Escuridão , Lipopolissacarídeos/farmacologia
18.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068940

RESUMO

The principal difference between hydroponics and other substrate cultivation methods is the flowing liquid hydroponic cultivation substrate. Our previous studies have revealed that a suitable flowing environment of nutrient solution promoted root development and plant growth, while an excess flow environment was unfavorable for plants. To explain the thigmomorphogenetic response of excess flow-induced metabolic changes, six groups of lettuce (Lactuca sativa L.), including two flow conditions and three time periods, were grown. Compared with the plants without flow, the plants with flow showed decreased root fresh weight, total root length, root surface area, and root volume but increased average root diameter and root density. The roots with flow had more upregulated metabolites than those without flow, suggesting that the flow may trigger metabolic synthesis and activity. Seventy-nine common differential metabolites among six groups were screened, and enrichment analysis showed the most significant enrichment in the arginine biosynthesis pathway. Arginine was present in all the groups and exhibited greater concentrations in roots with flow than without flow. It can be speculated from the results that a high-flowing environment of nutrient solution promotes arginine synthesis, resulting in changes in root morphology. The findings provide insights on root thigmomorphogenesis affected by its growing conditions and help understand how plants respond to environmental mechanical forces.


Assuntos
Plantas , Hidroponia/métodos , Nutrientes , Arginina
19.
J Environ Manage ; 331: 117248, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652879

RESUMO

Plant cultivation is a key aspect of future long-distance space missions, and the creation of an efficient food system will not be possible without it. The production of fertilizer in space is based on the recovery of water and nutrients from wastewater, such as urine and grey water. In this study, the fertilizer production process was conducted in an aerobic, activated sludge reactor, where nitrification and the process of carbon removal take place. Treated streams have three potential factors that could affect the plants growth in a hydroponic system (anionic surfactants, nutrients deficiencies, high salinity). The effect of these factors was examined for two hydroponic configurations. Their influence on lettuce yield, quality parameters and stress response were investigated and compared to the control cultivation. The results showed that the main cause of a decrease (up to 24%) in the yield productivity of plants grown on nitrified urine and grey water is oxidative stress originated from a deficiency of elements, not from used anionic surfactant. Enrichment with nutrients resulted in the restoration of proper protein synthesis and an increase in the activity of antioxidant enzymes, which was positively reflected in the qualitative and quantitative parameters of the enriched cultivation (fresh leaves mass equal to 103% of the control). Results also show that Sodium Methyl Cocoyl Taurate (SMCT) surfactant itself after biological treatment used in plant cultivation has no negative effects reflected in lettuce yield or quality.


Assuntos
Fertilizantes , Água , Hidroponia/métodos , Esgotos , Tensoativos
20.
J Environ Manage ; 345: 118666, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506444

RESUMO

The conjugated steroid estrogens (CSEs), including estrone sulfate sodium (E1-3 S) and 17ß-estradiol-3-O-sulfate sodium (E2-3 S), exhibit distinct metabolic behaviors in the aqueous and soil environments. However, their assimilation behaviors and metabolite formations in plant bodies (shoots and roots) remain poorly understood. Therefore, this study used a modified plant hydroponic system to explore the efficiency with which wheat (Triticum acstivnm L.) assimilated the two estrogen conjugates, E1-3 S and E2-3 S. Results indicated the potential of wheat to absorb E1-3 S and E2-3 S, with their assimilation in the root being significantly higher (104-105 ng/g dw) than in the shoot (103-104 ng/g dw). E1-3 S de-sulfated and transformed to estrone (E1) at a rate of 4%-45% in the root's oxidative environment, whereas E2-3 S converted to E1-3 S at 210%-570%. However, the root-to-shoot transfer was impeded by a less potent metabolic activity within the shoot system. The co-exposure treatment revealed that E1 or 17ß-estradiol (E2) affects the assimilation of E1-3 S and E2-3 S by wheat, with E1 inhibiting E1-3 S assimilation and E2 promoting E2-3 S assimilation in wheat bodies. Nonetheless, free-form steroid estrogens (FSEs), which typically have a significant hormone action, can oxidative-damage the wheat tissues, producing a progressive wilting of wheat leaf and so limiting the transpiration process. Co-exposure initially increased the assimilation amounts of E1-3 S (particularly in shoots) and E2-3 S (in both roots and shoots), but these values rapidly declined as exposure duration increased. The combined effects of E1-3 S and E2-3 S exposure also increased their assimilation. These findings suggest the need for further investigation into the cumulative impact of environmental estrogen contaminants. The findings of present study can potentially guide the development of strategies to prevent and manage steroid estrogen contamination in agricultural contexts.


Assuntos
Estrona , Triticum , Estrona/metabolismo , Triticum/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA