Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Turk J Med Sci ; 54(1): 86-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812636

RESUMO

Background and aim: Calpainopathy, also known as limb-girdle muscular dystrophy recessive type 1, is a progressive muscle disorder that impacts the muscles around the hips and shoulders. The disease is caused by defects in the CAPN3 gene and can be inherited in both recessive and dominant forms. In this retrospective study, we aimed to evaluate the clinical and molecular results of our patients with calpainopathy and to examine the CAPN3 variants in Turkish and global populations. Materials and methods: Molecular analyses were performed using the next-generation sequencing (NGS) method. CAPN3 variants were identified through the examination of various databases. Results: In this retrospective study, the cohort consisted of seven patients exhibiting the CAPN3 (NM_000070.3) mutation and a phenotype compatible with calpainopathy at a single center in Türkiye. All patients displayed high CK levels and muscle weakness. We report a novel missense c.2437G>A variant that causes the autosomal dominant form of calpainopathy. Interestingly, the muscle biopsy report for the patient with the novel mutation indicated sarcoglycan deficiency. Molecular findings for the remaining individuals in the cohort included a compound heterozygous variant (frameshift and missense), one homozygous nonsense, one homozygous intronic deletion, and three homozygous missense variants. The most common variant in the Turkish population was c.550del. In both populations, pathogenic variants were most frequently located in exon 21, according to exon length. Variants were stochastically distributed based on consequences in CAPN3 domains. Conclusion: Therefore, the NGS method proves highly effective in diagnosing rare diseases characterized by clinical heterogeneity. Assessing variants based on ethnicity holds significance in the development of precise therapies.


Assuntos
Calpaína , Proteínas Musculares , Distrofia Muscular do Cíngulo dos Membros , Humanos , Estudos Retrospectivos , Distrofia Muscular do Cíngulo dos Membros/genética , Turquia , Masculino , Calpaína/genética , Feminino , Proteínas Musculares/genética , Adulto , Adulto Jovem , Adolescente , Mutação/genética , Pessoa de Meia-Idade , Criança , Estudos de Coortes , Sequenciamento de Nucleotídeos em Larga Escala
2.
Hum Mutat ; 41(10): 1797-1810, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32668095

RESUMO

Improving the accuracy of variant interpretation during diagnostic sequencing is a major goal for genomic medicine. To explore an often-overlooked splicing effect of missense variants, we developed the functional assay ("minigene") for the majority of exons of CAPN3, the gene responsible for limb girdle muscular dystrophy. By systematically screening 21 missense variants distributed along the gene, we found that eight clinically relevant missense variants located at a certain distance from the exon-intron borders (deep exonic missense variants) disrupted normal splicing of CAPN3 exons. Several recent machine learning-based computational tools failed to predict splicing impact for the majority of these deep exonic missense variants, highlighting the importance of including variants of this type in the training sets during the future algorithm development. Overall, 24 variants in CAPN3 gene were explored, leading to the change in the American College of Medical Genetics and Genomics classification of seven of them when results of the "minigene" functional assay were considered. Our findings reveal previously unknown splicing impact of several clinically important variants in CAPN3 and draw attention to the existence of deep exonic variants with a disruptive effect on gene splicing that could be overlooked by the current approaches in clinical genetics.


Assuntos
Calpaína , Proteínas Musculares , Distrofia Muscular do Cíngulo dos Membros , Calpaína/genética , Éxons/genética , Humanos , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação de Sentido Incorreto , Splicing de RNA
3.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540302

RESUMO

Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a rare disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness of shoulder, pelvic, and proximal limb muscles that usually appears in children and young adults and results in loss of ambulation within 20 years after disease onset in most patients. The pathophysiological mechanisms involved in LGMDR1 remain mostly unknown, and to date, there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of Ca2+ homeostasis in the skeletal muscle is a significant underlying event in this muscular dystrophy. We also review and discuss specific clinical features of LGMDR1, CAPN3 functions, novel putative targets for therapeutic strategies, and current approaches aiming to treat LGMDR1. These novel approaches may be clinically relevant not only for LGMDR1 but also for other muscular dystrophies with secondary calpainopathy or with abnormal Ca2+ homeostasis, such as LGMD2B/LGMDR2 or sporadic inclusion body myositis.


Assuntos
Cálcio/metabolismo , Calpaína/genética , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Sinalização do Cálcio , Homeostase , Humanos , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação
4.
Muscle Nerve ; 58(4): 550-558, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30028523

RESUMO

INTRODUCTION: The aim of this study was to apply quantitative MRI (qMRI) to assess structural modifications in thigh muscles of subjects with limb girdle muscular dystrophy (LGMD) 2A and 2B with long disease duration. METHODS: Eleven LGMD2A, 9 LGMD2B patients and 11 healthy controls underwent a multi-parametric 3T MRI examination of the thigh. The protocol included structural T1-weighted images, DIXON sequences for fat fraction calculation, T2 values quantification and diffusion MRI. Region of interest analysis was performed on 4 different compartments (anterior compartment, posterior compartment, gracilis, sartorius). RESULTS: Patients showed high levels of fat infiltration as measured by DIXON sequences. Sartorius and anterior compartment were more infiltrated in LGMD2B than LGMD2A patients. T2 values were mildly reduced in both disorders. Correlations between clinical scores and qMRI were found. CONCLUSIONS: qMRI measures may help to quantify muscular degeneration, but careful interpretation is needed when fat infiltration is massive. Muscle Nerve 58: 550-558, 2018.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Músculos Isquiossurais/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Músculo Quadríceps/diagnóstico por imagem , Adulto , Estudos de Casos e Controles , Feminino , Músculos Isquiossurais/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Limitação da Mobilidade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiopatologia , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Músculo Quadríceps/fisiopatologia , Coxa da Perna , Adulto Jovem
5.
Muscle Nerve ; 55(4): 465-469, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27500519

RESUMO

INTRODUCTION: Little is known about the frequency of cardiopulmonary failure in limb-girdle muscular dystrophy type 2A (calpainopathy) patients, although some studies have reported severe cardiomyopathy or respiratory failure. METHODS: To clarify the frequency of cardiopulmonary dysfunction in this patient population, we retrospectively reviewed the respiratory and cardiac function of 43 patients with calpainopathy. RESULTS: Nine of the 43 patients had forced vital capacity (FVC) < 80%, and 3 used noninvasive positive pressure ventilation. Mean FVC was significantly lower in patients who were nonambulant and had normal creatine kinase levels. Only 1 patient had a prolonged QRS complex duration. Echocardiography revealed that 1 patient had very mild left ventricular dysfunction. CONCLUSIONS: These findings suggest that patients with calpainopathy may develop severe respiratory failure, but cardiac dysfunction is infrequent. Muscle Nerve 55: 465-469, 2017.


Assuntos
Cardiomiopatias/etiologia , Distrofia Muscular do Cíngulo dos Membros/complicações , Insuficiência Respiratória/etiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Calpaína/genética , Criança , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação/genética , Estudos Retrospectivos , Capacidade Vital/fisiologia , Adulto Jovem
7.
Muscle Nerve ; 52(2): 163-73, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900067

RESUMO

Limb girdle muscular dystrophy type 2A (LGMD2A) is the most frequent form of LGMD worldwide. Comprehensive clinical assessment and laboratory testing is essential for diagnosis of LGMD2A. Muscle immunoblot analysis of calpain-3 is the most useful tool to direct genetic testing, as detection of calpain-3 deficiency has high diagnostic value. However, calpain-3 immunoblot testing lacks sensitivity in about 30% of cases due to gene mutations that inactivate the enzyme. The best diagnostic strategy should be determined on a case-by-case basis, depending on which tissues are available, and which molecular and/or genetic methods are adopted. In this work we survey the current knowledge, advantages, limitations, and pitfalls of protein testing and mutation detection in LGMD2A and provide an update of genetic epidemiology.


Assuntos
Testes Genéticos , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Animais , Calpaína/deficiência , Calpaína/genética , Testes Genéticos/métodos , Humanos , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Mutação/genética
8.
Muscle Nerve ; 52(4): 661-3, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26032656

RESUMO

INTRODUCTION: Cardiac dysfunction occurs in several forms of limb girdle muscular dystrophy (LGMD). The aim of this study was to investigate cardiac involvement in calpainopathy (LGMD2A). METHODS: Cardiovascular evaluation was performed in 10 patients with genetically verified LGMD2A by echocardiography, 3 Tesla - cardiovascular magnetic resonance, 24-h electrocardiography recordings with heart rate variability (HRV) analysis, and 24-h blood pressure recordings. RESULTS: No patient with calpainopathy showed impairment of left or right ventricular function. One patient had a small amount (2% of left ventricle mass) of late gadolinium enhancement. HRV analysis revealed no significant difference compared with external reference data. CONCLUSIONS: The main finding of this study is the lack of cardiac involvement in patients with calpainopathy. Cardiac involvement was not found, even in individuals with advanced age and greater disease severity. Furthermore, we did not observe an overall reduction of cardiac autonomic regulation in calpainopathy.


Assuntos
Sistema Cardiovascular/fisiopatologia , Coração/fisiopatologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Adulto , Pressão Sanguínea , Ecocardiografia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Imageamento Tridimensional , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Skelet Muscle ; 14(1): 3, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389096

RESUMO

BACKGROUND: Human iPSC-derived 3D-tissue-engineered-skeletal muscles (3D-TESMs) offer advanced technology for disease modelling. However, due to the inherent genetic heterogeneity among human individuals, it is often difficult to distinguish disease-related readouts from random variability. The generation of genetically matched isogenic controls using gene editing can reduce variability, but the generation of isogenic hiPSC-derived 3D-TESMs can take up to 6 months, thereby reducing throughput. METHODS: Here, by combining 3D-TESM and shRNA technologies, we developed a disease modelling strategy to induce distinct genetic deficiencies in a single hiPSC-derived myogenic progenitor cell line within 1 week. RESULTS: As proof of principle, we recapitulated disease-associated pathology of Duchenne muscular dystrophy and limb-girdle muscular dystrophy type 2A caused by loss of function of DMD and CAPN3, respectively. shRNA-mediated knock down of DMD or CAPN3 induced a loss of contractile function, disruption of tissue architecture, and disease-specific proteomes. Pathology in DMD-deficient 3D-TESMs was partially rescued by a candidate gene therapy treatment using micro-dystrophin, with similar efficacy compared to animal models. CONCLUSIONS: These results show that isogenic shRNA-based humanized 3D-TESM models provide a fast, cheap, and efficient tool to model muscular dystrophies and are useful for the preclinical evaluation of novel therapies.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular de Duchenne , Animais , Humanos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Distrofia Muscular do Cíngulo dos Membros/patologia , Contração Muscular , RNA Interferente Pequeno
10.
Cureus ; 16(1): e51428, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298311

RESUMO

Limb-girdle muscular dystrophy (LGMD) is a collection of neuromuscular diseases that develop gradually and are rare, genetically, and clinically diverse. The weakness in muscles affecting the shoulder and pelvic girdles is a defining feature of LGMD. Calpainopathy is another name for limb-girdle muscular dystrophy type 2A (LGMD2A). Limb-girdle muscular dystrophy type 2A results from alterations in the calpain-3 (CAPN3) gene, which results in a CAPN3 protein shortage. Gower's sign is most commonly found in LGMD2A. The prevalence ranges from one person in every 14,500 to one in every 123,000. We present a case of a 25-year-old hypotensive female patient who complained of weakness in all four limbs and easy fatigue with a positive Gower's sign. For subsequent management, the neurologist referred the patient to the physical therapy department. The physical therapy goals included enhanced muscle strength, increased joint mobility, reduced fatigue, normalizing gait, and building dynamic balance and postural stability. Diagnosing LGMD clinical variability is important, emphasizing the importance of precise subtype identification and tailoring therapy. Tackling specific muscular deficits and functional restrictions emerges as a critical component in the holistic care of LGMD by physiotherapists. Continuous monitoring and evaluation using appropriate scales and measurements are essential for tracking performance and tailoring treatment strategies. Regular follow-up consultations with the physiotherapist are needed to identify changes in an individual's health and alter the treatment plan accordingly.

11.
Hum Mutat ; 34(10): 1387-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23864287

RESUMO

Limb-girdle muscular dystrophy type 2A (LGMD2A) is the most frequent autosomal recessive muscular dystrophy. It is caused by mutations in the calpain-3 (CAPN3) gene. The majority of the mutations described to date are located in the coding sequence of the gene. However, it is estimated that 25% of the mutations are present at exon-intron boundaries and modify the pre-mRNA splicing of the CAPN3 transcript. We have previously described the first deep intronic mutation in the CAPN3 gene: c.1782+1072G>C mutation. This mutation causes the pseudoexonization of an intronic sequence of the CAPN3 gene in the mature mRNA. In the present work, we show that the point mutation generates the inclusion of the pseudoexon in the mRNA using a minigene assay. In search of a treatment that restores normal splicing, splicing modulation was induced by RNA-based strategies, which included antisense oligonucleotides and modified small-nuclear RNAs. The best effect was observed with antisense sequences, which induced pseudoexon skipping in both HeLa cells cotransfected with mutant minigene and in fibroblasts from patients. Finally, transfection of antisense sequences and siRNA downregulation of serine/arginine-rich splicing factor 1 (SRSF1) indicate that binding of this factor to splicing enhancer sequences is involved in pseudoexon activation.


Assuntos
Éxons , Íntrons , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Oligonucleotídeos Antissenso/genética , RNA Nuclear Pequeno/genética , Processamento Alternativo , Calpaína/genética , Linhagem Celular , Feminino , Fibroblastos/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Humanos , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas Nucleares/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Processamento de Serina-Arginina
12.
J Biochem ; 174(5): 421-431, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37491733

RESUMO

Calpain is an intracellular cysteine protease that cleaves its specific substrates in a limited region to modulate cellular function. Calpain-1 (C1) and calpain-2 (C2) are ubiquitously expressed in mammalian cells, but calpain-3 (C3) is a skeletal muscle-specific type. In the course of calpain activation, the N-terminal regions of all three isoforms are clipped off in an intramolecular or intermolecular fashion. C1 proteolyzes C2 to promote further proteolysis, but C2 proteolyzes C1 to suspend C1 proteolysis, indicating the presence of C1-C2 reciprocal proteolysis. However, whether C3 is involved in the calpain proteolysis network is unclear. To address this, we examined whether GFP-tagged C3:C129S (GFP-C3:CS), an inactive protease form of C3, was a substrate for C1 or C2 in HEK cells. Intriguingly, the N-terminal region of C3:CS was cleaved by C1 and C2 at the site identical to that of the C3 autoproteolysis site. Furthermore, the N-terminal clipping of C3:CS by C1 and C2 was observed in mouse skeletal muscle lysates. Meanwhile, C3 preferentially cleaved the N-terminus of C1 over that of C2, and the sizes of these cleaved proteins were identical to their autoproteolysis forms. Our findings suggest an elaborate inter-calpain network to prime and suppress proteolysis of other calpains.


Assuntos
Calpaína , Músculo Esquelético , Camundongos , Animais , Calpaína/química , Calpaína/metabolismo , Proteólise , Músculo Esquelético/metabolismo , Mamíferos
13.
Neuromuscul Disord ; 32(4): 332-346, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35393236

RESUMO

Muscular dystrophies are a group of disorders that cause progressive muscle weakness. There is an increasing interest for the development of biomarkers for these disorders and specifically for Duchene Muscular Dystrophy. Limited research however, has been performed on the biomarkers' development for the most rare muscular dystrophies, like the Facioscapulohumeral Muscular Dystrophy, Limb-Girdle Muscular Dystrophy and Myotonic Dystrophy type 2. Here, we aimed to identify novel serum-based miRNA biomarkers for these rare muscular dystrophies, through high-throughput next-generation RNA sequencing. We identified many miRNAs that associate with muscular dystrophy patients compared to controls. Based on a series of selection criteria, the two best candidate miRNAs for each of these disorders were chosen and validated in a larger number of patients. Our results showed that miR-223-3p and miR-206 are promising serum-based biomarkers for Facioscapulohumeral Muscular Dystrophy type 1, miR-143-3p and miR-486-3p for Limb-Girdle Muscular Dystrophy type 2A whereas miR-363-3p and miR-25-3p associate with Myotonic Dystrophy type 2. Some of the identified miRNAs were significantly elevated in the serum of the patients compared to controls, whereas some others were lower. In conclusion, we provide new evidence that certain circulating miRNAs may be used as biomarkers for three types of rare muscular dystrophies.


Assuntos
MicroRNAs , Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular Facioescapuloumeral , Distrofia Miotônica , Biomarcadores/sangue , Humanos , MicroRNAs/sangue , MicroRNAs/genética , Distrofia Muscular do Cíngulo dos Membros/sangue , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular Facioescapuloumeral/sangue , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Miotônica/sangue , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/genética
14.
Cureus ; 14(1): e21353, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35198268

RESUMO

Limb-girdle muscle dystrophy (LGMD) is the fourth most common genetic cause of muscle weakness, with LGMD type 2A (LGMD2A) being one of the most common adult-onset muscular dystrophies presenting with limb-girdle weakness, while LGMD type 2B (LGMD2B) being the most common distal myopathy. This study includes two cases. The first case is a 13-year-old male, with no family history of similar symptoms, who presented with lower extremity weakness at the age of nine, starting with proximal weakness of the lower extremities, progressively involving the upper extremities. He had scapular winging and contracture of both Achilles tendons. The second case involves a 19-year-old male, with a distant family history of weakness, who presented with lower extremity weakness at the age of 10. He had distal myopathy, mainly as foot drop and atrophic gastrocnemii. In both cases, cardiac, intelligence, and bulbar function are spared. Electroneuromyography (ENMG) for both revealed myopathic process. Genetic testing results revealed calpain 3 (CAPN3) and dysferlin (DYSF) abnormality, confirming the diagnosis of LGMD2A and LGMD2B, respectively. This will be the first of its kind adequately documenting two of the most common LGMD subtype in our locale. Clinical phenomenology and preferential muscle involvement lead one to the gold standard genetic testing in heritable myopathies, which was well established in this report.

15.
Front Cell Dev Biol ; 10: 822563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309930

RESUMO

LGMDR1 is caused by mutations in the CAPN3 gene that encodes calpain 3 (CAPN3), a non-lysosomal cysteine protease necessary for proper muscle function. Our previous findings show that CAPN3 deficiency leads to reduced SERCA levels through increased protein degradation. This work investigates the potential contribution of the ubiquitin-proteasome pathway to increased SERCA degradation in LGMDR1. Consistent with our previous results, we observed that CAPN3-deficient human myotubes exhibit reduced SERCA protein levels and high cytosolic calcium concentration. Treatment with the proteasome inhibitor bortezomib (Velcade) increased SERCA2 protein levels and normalized intracellular calcium levels in CAPN3-deficient myotubes. Moreover, bortezomib was able to recover mutated CAPN3 protein in a patient carrying R289W and R546L missense mutations. We found that CAPN3 knockout mice (C3KO) presented SERCA deficits in skeletal muscle in the early stages of the disease, prior to the manifestation of muscle deficits. However, treatment with bortezomib (0.8 mg/kg every 72 h) for 3 weeks did not rescue SERCA levels. No change in muscle proteasome activity was observed in bortezomib-treated animals, suggesting that higher bortezomib doses are needed to rescue SERCA levels in this model. Overall, our results lay the foundation for exploring inhibition of the ubiquitin-proteasome as a new therapeutic target to treat LGMDR1 patients. Moreover, patients carrying missense mutations in CAPN3 and presumably other genes may benefit from proteasome inhibition by rescuing mutant protein levels. Further studies in suitable models will be necessary to demonstrate the therapeutic efficacy of proteasome inhibition for different missense mutations.

16.
Acta Myol ; 41(4): 207-211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36793650

RESUMO

Limb-girdle muscular dystrophy (LGMD) is a genetic muscle disorder causing weakness and wasting of the proximal limb musculature. When ambulation is lost, the attention must be shifted to the upper limb muscles' function. We studied the upper limb muscle strength and the corresponding function in 15 LGMDR1/LGMD2A and 13 LGMDR2/LGMD2B, through the Performance of Upper Limb scale and the MRC score of upper limbs. The proximal item K and the distal items N and R were lower in LGMD2B/R2. The mean MRC score of all the muscles involved linearly correlated (r2 = 0.922) for item K in LGMD2B/R2. The functional worsening paralleled the muscles weakness in LGMD2B/R2. By contrast, at proximal level the function of LGMD2A/R1 was preserved despite muscle weakness was present, presumably due to compensatory strategies. Sometimes the combination of parameters might be more informative than considering them separately. PUL scale and MRC might be interesting outcome measures in non-ambulant patients.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Humanos , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Músculo Esquelético , Debilidade Muscular/etiologia , Extremidade Superior
17.
Front Neurosci ; 15: 692482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720847

RESUMO

Limb-girdle muscular dystrophy type R1 (LGMDR1) is caused by mutations in CAPN3 and is the most common type of recessive LGMD. Even with the use of whole-exome sequencing (WES), only one mutant allele of CAPN3 is found in a significant number of LGMDR patients. This points to a role of non-coding, intronic or regulatory, sequence variants in the disease pathogenesis. Targeted sequencing of the whole CAPN3 gene including not only intronic, 3' and 5' UTRs but also potential regulatory regions was performed in 27 patients suspected with LGMDR1. This group included 13 patients with only one mutated CAPN3 allele detected previously with exome sequencing. A second rare variant in the non-coding part of CAPN3 was found in 11 of 13 patients with previously identified single mutation. Intronic mutations were found in 10 cases, with c.1746-20C>G variant present in seven patients. In addition, a large deletion of exons 2-8 was found in one patient. In the patients with no causative mutation previously found, we detected rare CAPN3 variants in 5 out of 10 patients and in two of them in a compound heterozygous state. Rare variants within putative regulatory sequences distant from the CAPN3 gene were found in 15 patients, although in 11 of these cases, other variants are deemed causative. The results indicate that intronic mutations are common in Polish LGMDR patients, and testing for non-coding mutations in CAPN3 should be performed in apparently single heterozygous patients.

18.
Neuromuscul Disord ; 31(6): 489-497, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33836912

RESUMO

We aimed to describe the natural history of Limb Girdle Muscular Dystrophy type 2A and 2B over more than three decades by considering muscular strength, motor, cardiac and respiratory function. 428 visits of nineteen 2A and twenty 2B patients were retrospectively analysed through a regression model to create the curves of evolution with disease duration of muscle strength (through Medical Research Council grading), motor function measure scale (D1, D2 and D3 domains) and cardio-pulmonary function tests. Clinically relevant muscular and motor function alterations occurred after the first decade of disease, while mild respiratory function alterations started after the second, with preserved cardiac function. Although type 2A showed relatively stronger distal lower limb muscles, while type 2B started with relatively stronger upper limb muscles, the corresponding motor functions were similar, becoming severely compromised after 25 years of disease. This was the longest retrospective study in types 2A and 2B. It defined curves of disease evolution not only from a neuromuscular, but also from functional, cardiac, and respiratory points of view, to be used to evaluate how the natural progression is changed by therapies. Due to slow disease progression, it was not possible to identify time sensitive endpoints.


Assuntos
Modelos Teóricos , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Adulto , Progressão da Doença , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Força Muscular , Músculo Esquelético/fisiopatologia , Fenótipo , Estudos Retrospectivos , Capacidade Vital
19.
J Neuromuscul Dis ; 8(1): 125-136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33337384

RESUMO

BACKGROUND: Limb girdle muscular dystrophy recessive type 1 (LGMDR1, Previously LGMD2A) is characterized by inactivating mutations in CAPN3. Despite the significant burden of muscular dystrophy in India, and particularly of LGMDR1, its genetic characterization and possible phenotypic manifestations are yet unidentified. MATERIAL AND METHODS: We performed bidirectional CAPN3 sequencing in 95 LGMDR1 patient samples characterized by calpain-3 protein analysis, and these findings were correlated with clinical, biochemical and histopathological features. RESULTS: We identified 84 (88.4%) cases of LGMDR1 harboring 103 CAPN3 mutations (71 novel and 32 known). At least two mutant alleles were identified in 79 (94.2%) of patients. Notably, 76% exonic variations were enriched in nine CAPN3 exons and overall, 41 variations (40%) correspond to only eight exonic and intronic mutations. Patients with two nonsense/out of frame/splice-site mutations showed significant loss of calpain-3 protein as compared to those with two missense/inframe mutations (P = 0.04). We observed a slow progression of disease and less severity in our patients compared to European population. Rarely, presenting clinical features were atypical, and mimicked other muscle diseases like FSHMD, distal myopathy and metabolic myopathies. CONCLUSION: This is first systematic study to characterize the genetic framework of LGMDR1 in the Indian population. Preliminary calpain-3 immunoblot screening serves well to direct genetic testing. Our findings prioritized nine CAPN3 exons for LGMDR1 diagnosis in our population; therefore, a targeted-sequencing panel of nine exons could serve well for genetic diagnosis, carrier testing, counseling and clinical trial feasibility study in LGMDR1 patients in India.


Assuntos
Calpaína/genética , Estudos de Associação Genética , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Testes Genéticos , Humanos , Índia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Mutação , Análise de Sequência de DNA
20.
Orphanet J Rare Dis ; 16(1): 194, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931068

RESUMO

BACKGROUND: Limb-girdle muscular dystrophy (LGMD) is a genetically and clinically heterogeneous group of rare muscular dystrophies. Subtype 2A (LGMD2A) also known as "calpainopathy" is an inherited autosomal recessive gene defect. Cardiac dysfunction is common in several forms of LGMD. Cardiac involvement in LGMD2A, however, is not clear. The aim of this study was to perform cardiac magnetic resonance (CMR)-based strain analysis in LGMD2A patients, as this is a diagnostic parameter of subclinical cardiac involvement and a powerful independent predictor of mortality. We conducted the largest prospective cardiac magnetic resonance study to date, including 11 genetically verified LGMD2A patients and 11 age- and sex-matched control subjects and performed CMR-based strain analysis of the left and right ventricles. RESULTS: Left and right global longitudinal strain (GLS) were not significantly different between the two groups and within normal reference ranges (left ventricle: control - 21.8 (5.1) % vs. patients - 22.3 (3.2) %, p = 0.38; right ventricle: control - 26.3 (7.2) % vs. patients - 26.8 (5.8) %, p = 0.85). Also, global circumferential and radial strains did not significantly differ between the two groups (p = 0.95 and p = 0.86, respectively). LGMD2A patients did not show relevant amounts of late gadolinium enhancement (LGE) or malignant ventricular arrhythmias. CONCLUSIONS: No evidence of even subtle cardiac dysfunction is evident form CMR-based strain analysis in LGMD2A patients. Malignant ventricular arrhythmias were not detected. Thus, in case of non-pathological initial echocardiographic and electrocardiographic examination, a less frequent or even no cardiac follow-up may be acceptable in these patients. However, if there are signs and symptoms that suggest an underlying cardiac condition (e.g. palpitations, angina, shortness of breath), this approach needs to be individualized to account for the unknown.


Assuntos
Meios de Contraste , Distrofia Muscular do Cíngulo dos Membros , Gadolínio , Humanos , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/genética , Estudos Prospectivos , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA