Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Magn Reson Med ; 80(6): 2339-2355, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29893995

RESUMO

PURPOSE: To improve the detection of peritumoral changes in GBM patients by exploring the relation between MRSI information and the distance to the solid tumor volume (STV) defined using structural MRI (sMRI). METHODS: Twenty-three MRSI studies (PRESS, TE 135 ms) acquired from different patients with untreated GBM were used in this study. For each MRSI examination, the STV was identified by segmenting the corresponding sMRI images using BraTumIA, an automatic segmentation method. The relation between different metabolite ratios and the distance to STV was analyzed. A regression forest was trained to predict the distance from each voxel to STV based on 14 metabolite ratios. Then, the trained model was used to determine the expected distance to tumor (EDT) for each voxel of the MRSI test data. EDT maps were compared against sMRI segmentation. RESULTS: The features showing abnormal values at the longest distances to the tumor were: %NAA, Glx/NAA, Cho/NAA, and Cho/Cr. These four features were also the most important for the prediction of the distances to STV. Each EDT value was associated with a specific metabolic pattern, ranging from normal brain tissue to actively proliferating tumor and necrosis. Low EDT values were highly associated with malignant features such as elevated Cho/NAA and Cho/Cr. CONCLUSION: The proposed method enables the automatic detection of metabolic patterns associated with different distances to the STV border and may assist tumor delineation of infiltrative brain tumors such as GBM.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Algoritmos , Ácido Aspártico/análogos & derivados , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Colina/metabolismo , Creatina/metabolismo , Glioma/patologia , Voluntários Saudáveis , Humanos , Reconhecimento Automatizado de Padrão , Análise de Regressão
2.
NMR Biomed ; 29(6): 751-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27061522

RESUMO

In this study non-negative matrix factorization (NMF) was hierarchically applied to simulated and in vivo three-dimensional 3 T MRSI data of the prostate to extract patterns for tumour and benign tissue and to visualize their spatial distribution. Our studies show that the hierarchical scheme provides more reliable tissue patterns than those obtained by performing only one NMF level. We compared the performance of three different NMF implementations in terms of pattern detection accuracy and efficiency when embedded into the same kind of hierarchical scheme. The simulation and in vivo results show that the three implementations perform similarly, although one of them is more robust and better pinpoints the most aggressive tumour voxel(s) in the dataset. Furthermore, they are able to detect tumour and benign tissue patterns even in spectra with lipid artefacts. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Algoritmos , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
3.
Cancers (Basel) ; 15(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509372

RESUMO

In vivo magnetic resonance spectroscopy (MRS) has two modalities, single-voxel (SV) and multivoxel (MV), in which one or more contiguous grids of SVs are acquired. PURPOSE: To test whether MV grids can be classified with models trained with SV. METHODS: Retrospective study. Training dataset: Multicenter multiformat SV INTERPRET, 1.5T. Testing dataset: MV eTumour, 3T. Two classification tasks were completed: 3-class (meningioma vs. aggressive vs. normal) and 4-class (meningioma vs. low-grade glioma vs. aggressive vs. normal). Five different methods were tested for feature selection. The classification was implemented using linear discriminant analysis (LDA), random forest, and support vector machines. The evaluation was completed with balanced error rate (BER) and area under the curve (AUC) on both sets. The accuracy in class prediction was calculated by developing a solid tumor index (STI) and segmentation accuracy with the Dice score. RESULTS: The best method was sequential forward feature selection combined with LDA, with AUCs = 0.95 (meningioma), 0.89 (aggressive), 0.82 (low-grade glioma), and 0.82 (normal). STI was 66% (4-class task) and 71% (3-class task) because two cases failed completely and two more had suboptimal STI as defined by us. DISCUSSION: The reasons for failure in the classification of the MV test set were related to the presence of artifacts.

4.
Neuroimage Clin ; 21: 101648, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30630760

RESUMO

PURPOSE: To develop a statistical method of combining multimodal MRI (mMRI) of adult glial brain tumours to generate tissue heterogeneity maps that indicate tumour grade and infiltration margins. MATERIALS AND METHODS: We performed a retrospective analysis of mMRI from patients with histological diagnosis of glioma (n = 25). 1H Magnetic Resonance Spectroscopic Imaging (MRSI) was used to label regions of "pure" low- or high-grade tumour across image types. Normal brain and oedema characteristics were defined from healthy controls (n = 10) and brain metastasis patients (n = 10) respectively. Probability density distributions (PDD) for each tissue type were extracted from intensity normalised proton density and T2-weighted images, and p and q diffusion maps. Superpixel segmentation and Bayesian inference was used to produce whole-brain tissue-type maps. RESULTS: Total lesion volumes derived automatically from tissue-type maps correlated with those from manual delineation (p < 0.001, r = 0.87). Large high-grade volumes were determined in all grade III & IV (n = 16) tumours, in grade II gemistocytic rich astrocytomas (n = 3) and one astrocytoma with a histological diagnosis of grade II. For patients with known outcome (n = 20), patients with survival time < 2 years (3 grade II, 2 grade III and 10 grade IV) had a high-grade volume significantly greater than zero (Wilcoxon signed rank p < 0.0001) and also significantly greater high grade volume than the 5 grade II patients with survival >2 years (Mann Witney p = 0.0001). Regions classified from mMRI as oedema had non-tumour-like 1H MRS characteristics. CONCLUSIONS: 1H MRSI can label tumour tissue types to enable development of a mMRI tissue type mapping algorithm, with potential to aid management of patients with glial tumours.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Glioma/patologia , Oligodendroglioma/patologia , Adulto , Idoso , Algoritmos , Teorema de Bayes , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA