Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Bioprocess Biosyst Eng ; 47(11): 1863-1874, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39133298

RESUMO

Limited light availability due to insufficient vertical mixing strongly reduces the applicability of raceway ponds (RWPs). To overcome this and create light-dark (L/D) cycles for enhanced biomass production through improved vertical mixing, vortex-induced vibration (VIV) system was implemented by the authors in a previous study to an existing pilot-scale RWP. In this study, experimental characterization of fluid dynamics for VIV-implemented RWP is carried out. Particle image velocimetry (PIV) technique is applied to visualize the flow. The extents of the vertical mixing due to VIV and the characteristics of L/D cycles were examined by tracking selected particles. Pond depth was hypothetically divided into three zones, namely dark, light Iimited and light saturated for detailed analysis of cell trajectories. It has been observed that VIV cylinder oscillation can efficiently facilitate the transfer of cells from light-limited to light-saturated zones. Among the cells that were tracked, 44% initially at dark zone entered the light-limited zone and 100% of initially at light-limited zone entered the light-saturated zone. 33% of all tracked cells experienced high-frequency L/D cycles with an average frequency of 35.69 s-1 and 0.49 light fraction. The impact of VIV was not discernible in the deeper sections of the pond, due to constrained oscillation amplitudes. Our findings suggest that the approximately 20% increase in biomass production reported in our previous study can be attributed to the synergistic effects of enhanced L/D cycle frequencies and improved light availability resulting from the transfer of cells from dark to light-limited zones. To further enhance the effectiveness of VIV, design improvements were developed. It was concluded that light availability could be significantly improved with the presented method for more effective use of RWPs.


Assuntos
Hidrodinâmica , Luz , Microalgas , Microalgas/crescimento & desenvolvimento , Vibração , Lagoas , Biomassa , Fotoperíodo
2.
J Environ Manage ; 243: 435-443, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103689

RESUMO

Phycoremediation; biotransformation of nutrients and or pollutants by microalgae, supports sustainable wastewater treatment, coupled with biomass production, resulting in enhanced cost savings, waste minimization, and energy conservation. A major challenge in this technique involves cultivation system to be adopted, mode of treatment and harvesting methods. Three different algal cultivation systems; polybags (PB), photobioreactors (PBR) and race way ponds (RWP) were employed for culturing an indigenous microalga, Scenedesmus obliquus in rice mill paddy-soaked wastewater (PSW). The maximum biomass productivity (BP) of 340 ±â€¯2 mg/L/d was observed in PBR with an ammonical nitrogen (NH3-N) removal (RN) of 96.12 ±â€¯0.21% and the phosphates (PO4-P) removal (RP) of 97.58 ±â€¯0.18%. Highest lipids (L)∼12% (% biomass), protein (P)∼40% and carbohydrates (C)∼20%) were gained in PBR culture system, followed by RWP and PB.


Assuntos
Microalgas , Scenedesmus , Biomassa , Fotobiorreatores , Águas Residuárias
3.
Biotechnol Lett ; 38(12): 1983-1990, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27565669

RESUMO

Open raceway ponds are regarded as the most economically viable option for large-scale cultivation of microalgae for low to mid-value bio-products, such as biodiesel. However, improvements are required including reducing the costs associated with harvesting biomass. There is now a growing interest in exploiting natural ecological processes within biotechnology. We review how chemical cues produced by algal grazers induce colony formation in algal cells, which subsequently leads to their sedimentation. A statistical meta-analysis of more than 80 studies reveals that Daphnia grazers can induce high levels of colony formation and sedimentation in Scenedesmus obliquus and that these natural, infochemical induced sedimentation rates are comparable to using commercial chemical equivalents. These data suggest that natural ecological interactions can be co-opted in biotechnology as part of a promising, low energy and clean harvesting method for use in large raceway systems.


Assuntos
Biotecnologia , Microalgas/metabolismo , Scenedesmus/metabolismo , Biomassa
4.
Sci Total Environ ; 923: 171554, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458470

RESUMO

A model based framework was established for large scale assessment of microalgae production using anaerobically digested effluent considering varied climatic parameters such as solar irradiance and air temperature. The aim of this research was to identify the optimum monthly average culture depth operation to minimize the cost of producing microalgae grown on anaerobic digestion effluents rich in ammoniacal nitrogen with concentration of 248 mg L-1. First, a productivity model combined with a thermal model was developed to simulate microalgae productivity in open raceway ponds as a function of climatic variables. Second, by combining the comprehensive open pond model with other harvesting equipment, the final techno economic model was developed to produce a microalgae product with 20 wt% biomass content and treated water with <1 mg L-1 ammoniacal nitrogen. The optimization approach on culture depth for outdoor open raceway ponds managed to reduce the cost of microalgae production grown in anaerobic digested wastewater up to 16 %, being a suitable solution for the production of low cost microalgae (1.7 AUD kg-1 dry weight) at possible scale of 1300 t dry weight microalgae yr-1.


Assuntos
Microalgas , Lagoas , Anaerobiose , Águas Residuárias , Biomassa , Nitrogênio
5.
Bioresour Technol ; 343: 126036, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34626761

RESUMO

Microalgae in the Middle East can theoretically address food security without competing for arable land, but concerns exist around scalability and durability of production systems under the extreme heat. Large-scale Chlorella sorokiniana production was developed in outdoor raceway ponds in Oman and monitored for 2 years to gather data for commercial production. Biological and technical challenges included construction, indoor/outdoor preculturing, upscaling, relating productivity to water temperature and meteorological conditions, harvesting, drying, and quality control. Small cultivation systems required cooling for initial scale-up, but, despite maximum temperatures of 49.7 °C, water temperatures were at acceptable levels by evaporative cooling in larger raceway ponds. Contamination with Vampirovibrio chlorellavorus was identified by 16S rDNA amplicon sequencing and addressed by culture replacement. Productivities ranged from 8 to 30 g-dry weight m-2d-1, with estimated annual productivity of 16 g-dry weight m-2d-1 as functions of solar intensity and water temperature, confirming that the region is suitable for commercial microalgae production.


Assuntos
Chlorella , Microalgas , Bactérias , Biomassa , Lagoas
6.
Biotechnol Adv ; 55: 107884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34896169

RESUMO

Production of phytoplankton (microalgae and cyanobacteria) in commercial raceway ponds and other systems is adversely impacted by phytoplankton pathogens, including bacteria, fungi and viruses. In addition, cultures are susceptible to productivity loss, or crash, through grazing by contaminating zooplankton such as protozoa, rotifers and copepods. Productivity loss and product contamination are also caused by otherwise innocuous invading phytoplankton that consume resources in competition with the species being cultured. This review is focused on phytoplankton competitors, pathogens and grazers of significance in commercial culture of microalgae and cyanobacteria. Detection and identification of these biological contaminants are discussed. Operational protocols for minimizing contamination, and methods of managing it, are discussed.


Assuntos
Cianobactérias , Microalgas , Animais , Fitoplâncton , Lagoas , Zooplâncton
7.
Front Bioeng Biotechnol ; 9: 651138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869245

RESUMO

The two major bottlenecks faced during microalgal biofuel production are, (a) higher medium cost for algal cultivation, and (b) cost-intensive and time consuming oil extraction techniques. In an effort to address these issues in the large scale set-ups, this comprehensive review article has been systematically designed and drafted to critically analyze the recent scientific reports that demonstrate the feasibility of microalgae cultivation using wastewaters in outdoor raceway ponds in the first part of the manuscript. The second part describes the possibility of bio-crude oil production directly from wet algal biomass, bypassing the energy intensive and time consuming processes like dewatering, drying and solvents utilization for biodiesel production. It is already known that microalgal drying can alone account for ∼30% of the total production costs of algal biomass to biodiesel. Therefore, this article focuses on bio-crude oil production using the hydrothermal liquefaction (HTL) process that converts the wet microalgal biomass directly to bio-crude in a rapid time period. The main product of the process, i.e., bio-crude oil comprises of C16-C20 hydrocarbons with a reported yield of 50-65 (wt%). Besides elucidating the unique advantages of the HTL technique for the large scale biomass processing, this review article also highlights the major challenges of HTL process such as update, and purification of HTL derived bio-crude oil with special emphasis on deoxygenation, and denitrogenation problems. This state of art review article is a pragmatic analysis of several published reports related to algal crude-oil production using HTL technique and a guide towards a new approach through collaboration of industrial wastewater bioremediation with rapid one-step bio-crude oil production from chlorophycean microalgae.

8.
Environ Sci Pollut Res Int ; 27(30): 37357-37362, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32144702

RESUMO

The heavy metal sources of large-scale raceway pond microalgae cultivation with flue gas were investigated to reduce heavy metal contents in microalgae during cultivation. The microalgae were cultivated with power plant flue gas (as C source) and circulating cooling seawater (added with N and P nutrients) for 6 days. The Pb, Cd, Hg, and As contents in microalgae were 0.91, 0.22, 0.08, and 0.28 ppm, respectively, which are nearly within the available national standard for food-grade microalgae. The heavy metal contents in microalgae with two membrane materials, namely, elastic polyethylene and random copolymer polypropylene, barely increased. The Hg, As, and Pb contents in microalgae cells cultivated with pure CO2 were 16.67%, 69.23%, and 70.33% that of cells cultivated with CO2 from flue gas. The Pb, As, and Hg contents in cells cultivated with fresh water were reduced by 38.46%, 15.38%, and 37.50%, respectively, compared with those cultivated with seawater. The heavy metal contents in microalgae were further reduced and controlled.


Assuntos
Metais Pesados , Microalgas , Biomassa , Dióxido de Carbono , Lagoas , Centrais Elétricas
9.
Biotechnol Biofuels ; 11: 82, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619078

RESUMO

BACKGROUND: Compared with other general energy crops, microalgae are more compatible with desert conditions. In addition, microalgae cultivated in desert regions can be used to develop biodiesel. Therefore, screening oil-rich microalgae, and researching the algae growth, CO2 fixation and oil yield in desert areas not only effectively utilize the idle desertification lands and other resources, but also reduce CO2 emission. RESULTS: Monoraphidium dybowskii LB50 can be efficiently cultured in the desert area using light resources, and lipid yield can be effectively improved using two-stage induction and semi-continuous culture modes in open raceway ponds (ORPs). Lipid content (LC) and lipid productivity (LP) were increased by 20% under two-stage industrial salt induction, whereas biomass productivity (BP) increased by 80% to enhance LP under semi-continuous mode in 5 m2 ORPs. After 3 years of operation, M. dybowskii LB50 was successfully and stably cultivated under semi-continuous mode for a month during five cycles of repeated culture in a 200 m2 ORP in the desert area. This culture mode reduced the supply of the original species. The BP and CO2 fixation rate were maintained at 18 and 33 g m-2 day-1, respectively. Moreover, LC decreased only during the fifth cycle of repeated culture. Evaporation occurred at 0.9-1.8 L m-2 day-1, which corresponded to 6.5-13% of evaporation loss rate. Semi-continuous and two-stage salt induction culture modes can reduce energy consumption and increase energy balance through the energy consumption analysis of life cycle. CONCLUSION: This study demonstrates the feasibility of combining biodiesel production and CO2 fixation using microalgae grown as feedstock under culture modes with ORPs by using the resources in the desert area. The understanding of evaporation loss and the sustainability of semi-continuous culture render this approach practically viable. The novel strategy may be a promising alternative to existing technology for CO2 emission reduction and biofuel production.

10.
Chemosphere ; 180: 33-41, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28391150

RESUMO

This study investigated the removal of antibiotic ciprofloxacin during the treatment of real wastewater using high rate algal ponds (HRAP). When spiked at 2 mg/L into primary domestic wastewater, ciprofloxacin (CPX) was efficiently removed from laboratory scale photobioreactors continuously operated under various durations of artificial illumination and hydraulic residence times. Subsequent batch tests conducted with reactor microcosms showed CPX removal was mainly caused by photodegradation during daytime, and sorption to biomass during night time. These findings were confirmed during an experiment conducted in a 1000 L pilot HRAP operated outdoors, as well as during outdoor batch assays conducted using pilot HRAP microcosms. While these results highlight a potentially interesting treatment capacity in comparison to conventional biological treatment, further research must confirm these findings at relevant pollutant concentration (ng-µg/L) and determine the fate and potential toxicity of degradation products.


Assuntos
Ciprofloxacina/análise , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Biomassa , Ciprofloxacina/metabolismo , Fotólise , Lagoas/química , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
11.
Bioresour Technol ; 245(Pt A): 162-170, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28892686

RESUMO

The lack of protein sources in Europe could be reduced with onsite production of microalgae with autotrophic and heterotrophic systems, owing the confirmation of economic and environmental benefits. This study aimed at the life cycle assessment (LCA) of microalgae and cyanobacteria cultivation (Chlorella vulgaris and Arthrospira platensis) in autotrophic and heterotrophic conditions on a pilot industrial scale (in model conditions of Berlin, Germany) with further biomass processing for food and feed products. The comparison of analysis results with traditional benchmarks (protein concentrates) indicated higher environmental impact of microalgae protein powders. However high-moisture extrusion of heterotrophic cultivated C. vulgaris resulted in more environmentally sustainable product than pork and beef. Further optimization of production with Chlorella pyrenoidosa on hydrolyzed food waste could reduce environmental impact in 4.5 times and create one of the most sustainable sources of proteins.


Assuntos
Ração Animal , Alimentos , Microalgas , Animais , Biomassa , Chlorella , Chlorella vulgaris , Europa (Continente) , Alemanha , Carne Vermelha
12.
Environ Sci Pollut Res Int ; 24(33): 25618-25626, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27272702

RESUMO

The effect of sequential batch cultures of the marine microalgae Nannochloropsis oculata on lipid and biomass production was studied in 200-L raceway ponds for 167 days (nine harvesting cycles) during winter and spring seasons under greenhouse conditions. The highest biomass concentration and productivity were 1.2 g/L and 49.8 mg/L/day on days 73 (5th cycle) and 167 (9th cycle), respectively. The overall interval of lipid production was between 131 and 530 mg/L. Despite the daily and seasonal variations of light irradiance (0-1099 µmol photon/m2 s), greenhouse temperature (2.1-50.7 °C), and culture temperature (12.5-31.4 °C), ANOVA analysis showed no statistical difference (p value > 0.01) on the fatty acid methyl ester (FAMES) composition over the nine harvesting cycles evaluated. The most abundant FAMES were palmitic (C16:0), stearic (C18:0) and palmitoleic (C16:1∆9) acids with 37.1, 28.6, and 8.4 %, respectively. The sequential batch cultures of N. oculata in raceway ponds showed an increasing biomass production in each new cycle while keeping the quality of the fatty acid mixture under daily and seasonal variations of light irradiance and temperature.


Assuntos
Biomassa , Ácidos Graxos/análise , Metabolismo dos Lipídeos , Microalgas/metabolismo , Estramenópilas/metabolismo , Lagoas , Estações do Ano
13.
Bioresour Technol ; 242: 197-205, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28416127

RESUMO

In this study, the growth of Arthrospira platensis was studied in an open raceway pond. Furthermore, dynamic model for algae growth and CFD modelling of hydrodynamics in open raceway pond were developed. The dynamic behaviour of the algal system was developed by solving mass balance equations of various components, considering light intensity and gas-liquid mass transfer. A CFD modelling of the hydrodynamics of open raceway pond was developed by solving mass and momentum balance equations of the liquid medium. The prediction of algae concentration from the dynamic model was compared with the experimental data. The hydrodynamic behaviour of the open raceway pond was compared with the literature data for model validation. The model predictions match the experimental findings. Furthermore, the hydrodynamic behaviour and residence time distribution in our small raceway pond were predicted. These models can serve as a tool to assess the pond performance criteria.


Assuntos
Spirulina/crescimento & desenvolvimento , Hidrodinâmica , Luz , Microalgas , Lagoas
14.
São Paulo; s.n; 2011. 169 p. ilus, tab, graf.
Tese em Português | LILACS | ID: lil-691562

RESUMO

O principal objetivo deste trabalho foi a avaliação do potencial da utilização do dióxido de carbono proveniente da fermentação alcoólica no cultivo Spirulina (Arthrospira) platensis, visando demonstrar a possibilidade do uso de um gás efluente na produção de biomassa microbiana de alto valor comercial. Para tanto, tal cianobactéria foi cultivada em tanques abertos, em escala laboratorial, em temperatura de 30 ± 1 °C e intensidade luminosa de 156 ± 20 µmol fótons m-2 s-1. O estudo de diversas variáveis de cultivo levou à fixação das seguintes condições: concentração do inóculo de 400 ± 20 mg L-1; pH de 9,0 ± 0,3, controlado por meio da adição de dióxido de carbono proveniente de cilindros; meio de cultura Schlõsser, modificado de maneira a conter 0,497 e 16,4 g L-1 de carbonato e bicarbonato de sódio, respectivamente, e apenas 5,9 mM de nitrato de sódio; adição de 7,5 mM de sulfato de amônio no decorrer de 13 dias, em quantidades diárias exponencialmente crescentes, através do processo descontínuo alimentado de cultivo. Sob tais condições foram obtidos os seguintes resultados: concentração celular máxima (Xm) de 2990 mg L-1, produtividade celular (PX) de 185 mg L-1 d-1, velocidade específica máxima de crescimento (µm) de 0,42 d-1, fator de conversão de nitrogênio em células (YX/N) de 8,85 mg mg-1, teor final de clorofila (CLf) de 4,3 mg g-1, e teores de proteínas (PTN) e lipídeos (LIP) de 35 e 21 %, respectivamente. Com a finalidade de estimular o crescimento celular de A. platensis, optou-se por aumentar o valor da intensidade luminosa de 156 para 192 ou 252 ± 20 µmol fótons m-2 s-1 no 5º, 8º ou 11º dia de cultivo. Os melhores resultados cinéticos (Xm = 3954 mg L-1, PX = 253 mg L-1 d-1) e de conteúdo da biomassa (CLf = 4,2 mg g-1, PTN = 28 %, LIP = 19 %) foram obtidos com aumento da intensidade luminosa para 192 ± 20 µmol fótons m-2 s-1 no 8º dia de cultivo. Os ensaios realizados sob tais condições otimizadas, porém com dióxido de carbono...


The main objective of this work was the evaluation of the potential of using carbon dioxide from alcoholic fermentation on Spirulina (Arthrospira) platensis cultivation, aiming to prove the feasibility of applying an effluent gas in the production of high added-value microbial biomass. In order to do so, the cyanobacterium was cultivated in laboratorial-scale open raceway tanks at temperature 30 ± 1 °C and light intensity 156 ± 20 µmol photons m-2 s-1. After the study of several cultivation variables, the following conditions were set: inoculum concentration 400 ± 20 mg L-1; pH 9,0 ± 0,3, controlled by the addition of carbon dioxide from cylinders; Schlõsser medium, modified as to contain 0,497 and 16,4 g L-1 sodium carbonate and bicarbonate, respectively, and only 5,9 mM sodium nitrate; addition of 7,5 mM ammonium sulphate throughout 13 days, at exponentially increasing amounts, by the fed-batch cultivation process. Under such conditions, the following results were obtained: maximum cell concentration Xm = 2990 mg L-1, cell productivity PX = 185 mg L-1 d-1, maximum specific growth rate µm = 0,42 d-1, cell to nitrogen conversion factor YX/N = 8,85 mg mg-1, final chlorophyll content CLf = 4,3 mg g-1, and content of proteins (PTN) and lipids (LIP) of 35 and 21 %, respectively. Objectiving further optimized A. platensis growth, it was chosen to increase the light intensity from 156 to 192 or 252 ± 20 µmol photons m-2 s-1 on the 5th, 8th or 11th day of cultivation. The best results in terms of growth (Xm = 3954 mg L-1, PX = 253 mg L-1 d-1) and biomass content (CLf = 4,2 mg g-1, PTN = 28 %, LIP = 19 %) were reached with increasing the light intensity to 192 ± 20 µmol photons m-2 s-1 on the 8th day of cultivation. The runs carried out under such optimum conditions, but using carbon dioxide from alcoholic fermentation, led to the following results: Xm = 3298 mg L-1, PX = 206 mg L-1 d-1, CLf = 4,0 mg g-1, PTN = 28 %, LIP = 17 %. Conclusively, the...


Assuntos
Dióxido de Carbono , Fermentação , Nitrogênio , Nitratos/administração & dosagem , Spirulina/crescimento & desenvolvimento , Produção Agrícola , Estimulação Luminosa , Lagoas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA