Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.086
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(17): 4512-4530.e22, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34343496

RESUMO

Cytotoxic T lymphocyte (CTL) responses against tumors are maintained by stem-like memory cells that self-renew but also give rise to effector-like cells. The latter gradually lose their anti-tumor activity and acquire an epigenetically fixed, hypofunctional state, leading to tumor tolerance. Here, we show that the conversion of stem-like into effector-like CTLs involves a major chemotactic reprogramming that includes the upregulation of chemokine receptor CXCR6. This receptor positions effector-like CTLs in a discrete perivascular niche of the tumor stroma that is densely occupied by CCR7+ dendritic cells (DCs) expressing the CXCR6 ligand CXCL16. CCR7+ DCs also express and trans-present the survival cytokine interleukin-15 (IL-15). CXCR6 expression and IL-15 trans-presentation are critical for the survival and local expansion of effector-like CTLs in the tumor microenvironment to maximize their anti-tumor activity before progressing to irreversible dysfunction. These observations reveal a cellular and molecular checkpoint that determines the magnitude and outcome of anti-tumor immune responses.


Assuntos
Receptores CXCR6/metabolismo , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral , Animais , Antígeno B7-H1/metabolismo , Comunicação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Quimiocina CXCL16 , Células Dendríticas/metabolismo , Interleucina-12/metabolismo , Interleucina-15/metabolismo , Ligantes , Linfonodos/metabolismo , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos C57BL
2.
Cell ; 178(6): 1465-1477.e17, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491388

RESUMO

Most human protein-coding genes are regulated by multiple, distinct promoters, suggesting that the choice of promoter is as important as its level of transcriptional activity. However, while a global change in transcription is recognized as a defining feature of cancer, the contribution of alternative promoters still remains largely unexplored. Here, we infer active promoters using RNA-seq data from 18,468 cancer and normal samples, demonstrating that alternative promoters are a major contributor to context-specific regulation of transcription. We find that promoters are deregulated across tissues, cancer types, and patients, affecting known cancer genes and novel candidates. For genes with independently regulated promoters, we demonstrate that promoter activity provides a more accurate predictor of patient survival than gene expression. Our study suggests that a dynamic landscape of active promoters shapes the cancer transcriptome, opening new diagnostic avenues and opportunities to further explore the interplay of regulatory mechanisms with transcriptional aberrations in cancer.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , Regiões Promotoras Genéticas/genética , Transcriptoma/genética , Bases de Dados Genéticas , Humanos , RNA-Seq/métodos
3.
Cell ; 173(2): 305-320.e10, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625049

RESUMO

The Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic alterations underlying human cancers. At this historic junction marking the completion of genomic characterization of over 11,000 tumors from 33 cancer types, we present our current understanding of the molecular processes governing oncogenesis. We illustrate our insights into cancer through synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: (1) somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; (2) the influence of the tumor genome and epigenome on transcriptome and proteome; and (3) the relationship between tumor and the microenvironment, including implications for drugs targeting driver events and immunotherapies. These results will anchor future characterization of rare and common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will guide the deployment of clinical genomic sequencing.


Assuntos
Carcinogênese/genética , Genômica , Neoplasias/patologia , Reparo do DNA/genética , Bases de Dados Genéticas , Genes Neoplásicos , Humanos , Redes e Vias Metabólicas/genética , Instabilidade de Microssatélites , Mutação , Neoplasias/genética , Neoplasias/imunologia , Transcriptoma , Microambiente Tumoral/genética
4.
Cell ; 173(2): 291-304.e6, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625048

RESUMO

We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.


Assuntos
Neoplasias/patologia , Aneuploidia , Cromossomos/genética , Análise por Conglomerados , Ilhas de CpG , Metilação de DNA , Bases de Dados Factuais , Humanos , MicroRNAs/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , RNA Mensageiro/metabolismo
5.
Cell ; 173(2): 321-337.e10, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625050

RESUMO

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFß signaling, p53 and ß-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Assuntos
Bases de Dados Genéticas , Neoplasias/patologia , Transdução de Sinais/genética , Genes Neoplásicos , Humanos , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
6.
Cell ; 173(2): 400-416.e11, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625055

RESUMO

For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale.


Assuntos
Neoplasias/patologia , Bases de Dados Genéticas , Genômica , Humanos , Estimativa de Kaplan-Meier , Neoplasias/genética , Neoplasias/mortalidade , Modelos de Riscos Proporcionais
7.
Cell ; 171(2): 481-494.e15, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985567

RESUMO

Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.


Assuntos
Sistemas CRISPR-Cas , Perfilação da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Células Cultivadas , Exoma , Feminino , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Masculino , Rituximab/administração & dosagem
8.
Immunity ; 54(2): 367-386.e8, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567262

RESUMO

Understanding the contribution of the host's genetic background to cancer immunity may lead to improved stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the effect of common and rare germline variants on 139 well-defined immune traits in ∼9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and for interferon signaling. Common variants of IFIH1, TMEM173 (STING1), and TMEM108 were associated with differential interferon signaling and variants mapping to RBL1 correlated with T cell subset abundance. Pathogenic or likely pathogenic variants in BRCA1 and in genes involved in telomere stabilization and Wnt-ß-catenin also acted as immune modulators. Our findings provide evidence for the impact of germline genetics on the composition and functional orientation of the tumor immune microenvironment. The curated datasets, variants, and genes identified provide a resource toward further understanding of tumor-immune interactions.


Assuntos
Mutação em Linhagem Germinativa/genética , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Genes BRCA1 , Estudo de Associação Genômica Ampla , Humanos , Interferons/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Característica Quantitativa Herdável , Proteína p107 Retinoblastoma-Like/genética , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
9.
Mol Cell ; 81(10): 2246-2260.e12, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33861991

RESUMO

Exitron splicing (EIS) creates a cryptic intron (called an exitron) within a protein-coding exon to increase proteome diversity. EIS is poorly characterized, but emerging evidence suggests a role for EIS in cancer. Through a systematic investigation of EIS across 33 cancers from 9,599 tumor transcriptomes, we discovered that EIS affected 63% of human coding genes and that 95% of those events were tumor specific. Notably, we observed a mutually exclusive pattern between EIS and somatic mutations in their affected genes. Functionally, we discovered that EIS altered known and novel cancer driver genes for causing gain- or loss-of-function, which promotes tumor progression. Importantly, we identified EIS-derived neoepitopes that bind to major histocompatibility complex (MHC) class I or II. Analysis of clinical data from a clear cell renal cell carcinoma cohort revealed an association between EIS-derived neoantigen load and checkpoint inhibitor response. Our findings establish the importance of considering EIS alterations when nominating cancer driver events and neoantigens.


Assuntos
Epitopos/genética , Éxons/genética , Perfilação da Expressão Gênica , Íntrons/genética , Neoplasias/genética , Oncogenes , Splicing de RNA/genética , Sequência de Aminoácidos , Linhagem Celular , Estudos de Coortes , Humanos , Mutação/genética
10.
Hum Mol Genet ; 33(13): 1131-1141, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38538560

RESUMO

Splicing factors (SFs) are the major RNA-binding proteins (RBPs) and key molecules that regulate the splicing of mRNA molecules through binding to mRNAs. The expression of splicing factors is frequently deregulated in different cancer types, causing the generation of oncogenic proteins involved in cancer hallmarks. In this study, we investigated the genes that encode RNA-binding proteins and identified potential splicing factors that contribute to the aberrant splicing applying a random forest classification model. The result suggested 56 splicing factors were related to the prognosis of 13 cancers, two SF complexes in liver hepatocellular carcinoma, and one SF complex in esophageal carcinoma. Further systematic bioinformatics studies on these cancer prognostic splicing factors and their related alternative splicing events revealed the potential regulations in a cancer-specific manner. Our analysis found high ILF2-ILF3 expression correlates with poor prognosis in LIHC through alternative splicing. These findings emphasize the importance of SFs as potential indicators for prognosis or targets for therapeutic interventions. Their roles in cancer exhibit complexity and are contingent upon the specific context in which they operate. This recognition further underscores the need for a comprehensive understanding and exploration of the role of SFs in different types of cancer, paving the way for their potential utilization in prognostic assessments and the development of targeted therapies.


Assuntos
Processamento Alternativo , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Aprendizado de Máquina , Neoplasias , Fatores de Processamento de RNA , Humanos , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Prognóstico , Processamento Alternativo/genética , Neoplasias/genética , Biologia Computacional/métodos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Splicing de RNA/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética
11.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38426321

RESUMO

The common loci represent a distinct set of the human genome sites that harbor genetic variants found in at least 1% of the population. Small somatic mutations occur at the common loci and non-common loci, i.e. csmVariants and ncsmVariants, are presumed with similar probabilities. However, our work revealed that within the coding region, common loci constituted only 1.03% of all loci, yet they accounted for 5.14% of TCGA somatic mutations. Furthermore, the small somatic mutation incidence rate at these common loci was 2.7 times that observed in the non-common. Notably, the csmVariants exhibited an impressive recurrent rate of 36.14%, which was 2.59 times of the ncsmVariants. The C-to-T transition at the CpG sites accounted for 32.41% of the csmVariants, which was 2.93 times for the ncsmVariants. Interestingly, the aging-related mutational signature contributed to 13.87% of the csmVariants, 5.5 times that of ncsmVariants. Moreover, 35.93% of the csmVariants contexts exhibited palindromic features, outperforming ncsmVariant contexts by 1.84 times. Notably, cancer patients with higher csmVariants rates had better progression-free survival. Furthermore, cancer patients with high-frequency csmVariants enriched with mismatch repair deficiency were also associated with better progression-free survival. The accumulation of csmVariants during cancerogenesis is a complex process influenced by various factors. These include the presence of a substantial percentage of palindromic sequences at csmVariants sites, the impact of aging and DNA mismatch repair deficiency. Together, these factors contribute to the higher somatic mutation incidence rates of common loci and the overall accumulation of csmVariants in cancer development.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Incidência , Neoplasias Encefálicas/genética , Mutação
12.
J Biol Chem ; 300(7): 107418, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815867

RESUMO

ATP-citrate lyase (ACLY) links carbohydrate and lipid metabolism and provides nucleocytosolic acetyl-CoA for protein acetylation. ACLY has two major splice isoforms: the full-length canonical "long" isoform and an uncharacterized "short" isoform in which exon 14 is spliced out. Exon 14 encodes 10 amino acids within an intrinsically disordered region and includes at least one dynamically phosphorylated residue. Both isoforms are expressed in healthy tissues to varying degrees. Analysis of human transcriptomic data revealed that the percent spliced in (PSI) of exon 14 is increased in several cancers and correlated with poorer overall survival in a pan-cancer analysis, though not in individual tumor types. This prompted us to explore potential biochemical and functional differences between ACLY isoforms. Here, we show that there are no discernible differences in enzymatic activity or stability between isoforms or phosphomutants of ACLY in vitro. Similarly, both isoforms and phosphomutants were able to rescue ACLY functions, including fatty acid synthesis and bulk histone acetylation, when re-expressed in Acly knockout cells. Deletion of Acly exon 14 in mice did not overtly impact development or metabolic physiology nor did it attenuate tumor burden in a genetic model of intestinal cancer. Notably, expression of epithelial splicing regulatory protein 1 (ESRP1) is highly correlated with ACLY PSI. We report that ACLY splicing is regulated by ESRP1. In turn, both ESRP1 expression and ACLY PSI are correlated with specific immune signatures in tumors. Despite these intriguing patterns of ACLY splicing in healthy and cancer tissues, functional differences between the isoforms remain elusive.


Assuntos
ATP Citrato (pro-S)-Liase , Processamento Alternativo , Neoplasias , Humanos , Animais , Camundongos , ATP Citrato (pro-S)-Liase/metabolismo , ATP Citrato (pro-S)-Liase/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Éxons , Acetilação
13.
Stat Appl Genet Mol Biol ; 23(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810893

RESUMO

This article addresses the limitations of existing statistical models in analyzing and interpreting highly skewed miRNA-seq raw read count data that can range from zero to millions. A heavy-tailed model using discrete stable distributions is proposed as a novel approach to better capture the heterogeneity and extreme values commonly observed in miRNA-seq data. Additionally, the parameters of the discrete stable distribution are proposed as an alternative target for differential expression analysis. An R package for computing and estimating the discrete stable distribution is provided. The proposed model is applied to miRNA-seq raw counts from the Norwegian Women and Cancer Study (NOWAC) and the Cancer Genome Atlas (TCGA) databases. The goodness-of-fit is compared with the popular Poisson and negative binomial distributions, and the discrete stable distributions are found to give a better fit for both datasets. In conclusion, the use of discrete stable distributions is shown to potentially lead to more accurate modeling of the underlying biological processes.


Assuntos
MicroRNAs , Modelos Estatísticos , MicroRNAs/genética , Humanos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Neoplasias/genética , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/estatística & dados numéricos , Software
14.
Genomics ; 116(3): 110852, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703969

RESUMO

Autophagy, a highly conserved process of protein and organelle degradation, has emerged as a critical regulator in various diseases, including cancer progression. In the context of liver cancer, the predictive value of autophagy-related genes remains ambiguous. Leveraging chip datasets from the TCGA and GTEx databases, we identified 23 differentially expressed autophagy-related genes in liver cancer. Notably, five key autophagy genes, PRKAA2, BIRC5, MAPT, IGF1, and SPNS1, were highlighted as potential prognostic markers, with MAPT showing significant overexpression in clinical samples. In vitro cellular assays further demonstrated that MAPT promotes liver cancer cell proliferation, migration, and invasion by inhibiting autophagy and suppressing apoptosis. Subsequent in vivo studies further corroborated the pro-tumorigenic role of MAPT by suppressing autophagy. Collectively, our model based on the five key genes provides a promising tool for predicting liver cancer prognosis, with MAPT emerging as a pivotal factor in tumor progression through autophagy modulation.


Assuntos
Autofagia , Neoplasias Hepáticas , Proteínas tau , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Autofagia/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Prognóstico , Linhagem Celular Tumoral , Survivina/genética , Survivina/metabolismo , Proliferação de Células , Animais , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Biomarcadores Tumorais/genética , Movimento Celular , Camundongos , Apoptose , Regulação Neoplásica da Expressão Gênica , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo
15.
Genomics ; 116(5): 110930, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39214479

RESUMO

Breast cancer (BC) is a prevalent cancer of the female reproductive system and a major contributor to cancer-related mortality. The activation of NLRP3, a key inflammasome, has been extensively associated with tumor-related molecular and cellular processes; however, the regulatory mechanisms and specific role of NLRP3 in breast cancer remain incompletely elucidated. This study aimed to evaluate the molecular mechanisms of NLRP3-related genes in BC. Utilizing bioinformatics methods, the present research analyzed the TCGA-BRCA dataset, which included four groups of transcriptome sequencing data as follows, normal (WT), NLRP3 knockout (KO), non-knockout-BRCA (BC-WT), and NLRP3-knockout-BRCA (BC-KO). Results indicated that NLRP3 was significantly down-regulated in TCGA-BRCA. Key module genes were mainly enriched in leukocyte cell-cell adhesion and cytokine-cytokine receptor interaction. Moreover, correlation analysis showed that NLRP3 was positively associated with cancer-associated fibroblasts and negatively associated with CD4+ Th1 T-cells. In addition, the DEGs1 and DEGs2 overlapping indicated 505 feature genes, with Chac1 (negative) and Ugt8a (positive) had the strongest correlation with differential immune cells (class-switched memory B cells). Pathway intersection revealed 13 co-KEGG pathways. The BC-KO group indicated markedly reduced levels of four genes (Ccl19, Ccl20, Ccl21a, and H2-Oa) and increased levels of two genes (Il2ra and H2-Ob). This study delved into the role of NLRP3 in BC, exploring its regulatory mechanisms and the impact gene knockout. Bioinformatics approaches identified NLRP3-associated genes, their enriched pathways, and interactions within the tumor microenvironment (TME), providing novel insights into NLRP3 function, TME dynamics, and potential targets for BC prevention and treatment.

16.
J Cell Mol Med ; 28(6): e18147, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38429901

RESUMO

HCC is a globally high-incidence malignant tumour, and its pathogenesis is still unclear. Recently, STRN3 has been found to be elevated in various tumours, but its expression and biological functions in HCC have not been studied. In the study, clinical correlation analysis was performed on 371 liver cancer patients from TCGA database and liver cancer tissues and normal tissues from the GEO database. qRT-PCR and western blotting were used to detect relevant proteins in cells, and CCK8 and colony formation experiments were performed to analyse cell proliferation ability. Transwell and wound healing experiments were performed to detect cell invasion ability, and flow cytometry was used to detect cell apoptosis. Single-cell sequencing data and multiple immunofluorescence were analysed for the expression abundance and distribution of certain proteins. Immunohistochemistry was used to assess the expression of STRN3 in patients' tumour and adjacent non-cancerous tissues. The results indicated STRN3 was highly expressed in liver tumour tissues and was closely associated with poor prognosis. Knockdown of STRN3 could significantly inhibit cell proliferation and migration ability. At the same time, we found that STRN3 could inhibit the Hippo pathway and promote the entry of YAP protein into the nucleus. Our study first found that STRN3 could promote tumour growth by inhibiting the Hippo pathway. The study of STRN3 can promote the understanding and treatment of the occurrence and development of HCC.


Assuntos
Carcinoma Hepatocelular , Via de Sinalização Hippo , Neoplasias Hepáticas , Humanos , Autoantígenos , Proteínas de Ligação a Calmodulina/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo/genética , Neoplasias Hepáticas/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
17.
J Cell Mol Med ; 28(8): e18265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38534098

RESUMO

Mitochondria and their related genes (MTRGs) are pivotal in the tumour microenvironment (TME) of cervical cancer, influencing prognosis and treatment response. This study developed a prognostic model using MTRGs to predict overall survival (OS) in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), aiming for personalized therapy. Analysing 14 MTRGs like ISCU and NDUFA11 through techniques such as univariate Cox regression, we found that a low mitochondrial (MT) score is associated with better survival, while a high MT score predicts poorer outcomes. The TME score, particularly influenced by CD8 T cells, also correlates with prognosis, with a high score indicating favourable outcomes. The interplay between MT and TME subtypes revealed that the best prognosis is seen in patients with a low MT and high TME score. Our findings highlight the role of MTRGs as potential biomarkers and therapeutic targets in cervical cancer, offering a novel approach to improving patient outcomes through a more nuanced understanding of mitochondrial function and immune interactions within the TME. This model presents a promising avenue for enhancing the precision of prognostic assessments in CESC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Humanos , Feminino , Microambiente Tumoral , Mitocôndrias , DNA Mitocondrial
18.
J Cell Mol Med ; 28(4)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363001

RESUMO

Periodontal disease is a risk factor for head and neck squamous cell carcinoma (HNSCC), and Porphyromonas gingivalis, a major periodontal pathogen, has been identified as a specific and potentially independent microbial factor that increases the risk of cancer mortality. Gene expression in HNSCC due to P. gingivalis infection and how changes in gene expression affect the prognosis of HNSCC patients are not clarified. When P. gingivalis was cultured with HNSCC cells, it efficiently adhered to these cells and enhanced their invasive ability. A transcriptome analysis of P. gingivalis -infected HNSCC cells showed that genes related to migration, including CCL20, CITED2, CTGF, C8orf44-SGK3, DUSP10, EGR3, FUZ, HBEGF, IL1B, IL24, JUN, PLAU, PTGS2, P2RY1, SEMA7A, SGK1 and SIX2, were highly up- or down-regulated. The expression of up-regulated genes was examined using the expression data of HNSCC patients obtained from The Cancer Genome Atlas (TCGA) database, and the expression of 5 genes, including PLAU, was found to be higher in cancer tissue than in solid normal tissue. An analysis of protein-protein interactions revealed that these 5 genes formed a dense network. A Cox regression analysis showed that high PLAU expression levels were associated with a poor prognosis in patients with TCGA-HNSCC. Furthermore, the prognostic impact correlated with tumour size and the presence or absence of lymph node metastasis. Collectively, these results suggest the potential of PLAU as a molecular prognostic marker in HNSCC patients. Further in vivo and in vitro studies are needed to verify the findings of this study.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas de Membrana , Porphyromonas gingivalis , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Biomarcadores Tumorais/genética , Fosfatases de Especificidade Dupla/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/microbiologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Porphyromonas gingivalis/isolamento & purificação , Prognóstico , Proteínas Repressoras/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Transativadores/genética , Proteínas de Membrana/genética
19.
Oncologist ; 29(7): e864-e876, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38366907

RESUMO

BACKGROUND: As a newly identified subtype of HER2-negative tumors associated with a less favorable prognosis, it remains crucial to evaluate potential prognostic and predictive factors, particularly non-invasive biomarkers, for individuals with human epidermal growth factor 2 (HER2) low early-stage breast cancer (EBC). Multiple investigations have highlighted that HER2-negative patients with EBC exhibiting high homologous recombination deficiency (HRD) scores display lower rates of pathological complete response (PCR) to neoadjuvant chemotherapy (NAC). Nevertheless, no study to date has explored the correlation between HRD and the long-term prognosis in HER2-low patients with EBC. PATIENTS AND METHODS: This retrospective observational study focuses on primary EBC sourced from The Cancer Genome Atlas dataset (TCGA). It reveals the gene mutation landscape in EBC with low HER2 expression and elucidates the tumor immune landscape across different HRD states. Utilizing bioinformatics analysis and Cox proportional models, along with the Kaplan-Meier method, the study assesses the correlation between HRD status and disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI). Subgroup analyses were conducted to identify potential variations in the association between HRD and prognosis. RESULTS: In the patients with HER2-low breast cancer, patients with homologous recombination related genes (HRRGs) defects had an HRD score about twice that of those without related genes mutations, and were at higher risk of acquiring ARID1A, ATM, and BRCA2 mutations. We also found that most immune cell abundances were significantly higher in EBC tumors with high HRD than in EBC tumors with low HRD or HRD-medium, particularly plasma B-cell abundance, CD8 T-cell abundance, and M1 macrophages. In addition, these tumors with HRD-high also appear to have significantly higher tumor immune scores and lower interstitial scores. Then, we analyzed the relationship between different HRD status and prognosis. There was statistical significance (P = .036 and P = .046, respectively) in DSS and PFI between the HRD-low and HRD-high groups, and patients with HRD-high EBC showed relatively poor survival outcomes. A medium HRD score (hazard ratio, HR = 2.15, 95% CI: 1.04-4.41, P = .038) was a significant risk factor for PFI. Hormone receptor positivity is an important factor in obtaining medium-high HRD score and poor prognosis. CONCLUSION: Higher HRD scores were associated with poorer PFI outcomes, particularly in people with HR+/HER2-low. Varied HRD states exhibited distinctions in HRRGs and the tumor immune landscape. These insights have the potential to assist clinicians in promptly identifying high-risk groups and tailoring personalized treatments for patients with HER2-low EBC, aiming to enhance long-term outcomes.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Reparo de DNA por Recombinação , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Estudos Retrospectivos , Prognóstico , Receptor ErbB-2/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Adulto , Idoso
20.
J Gene Med ; 26(1): e3585, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926491

RESUMO

BACKGROUND: NLRP12 is a member of the intracellular Nod-like receptor (NLR) family, suggesting it is an innate immune receptor for the initiation and progression of several cancers. However, its role on prognosis and immune infiltrates in epithelial ovarian cancer (EOC) is still unknown. The present study aimed to evaluate its prognostic value and its association with immune infiltrates in EOC. METHODS: The mRNA expression of NLRP12 of EOC from The Cancer Genome Atlas (TCGA) was analyzed. The association between NLRP12 and clinicopathological characters was evaluated with logistic regression. The association between NLRP12 expression and survival was analyzed by Cox regression and Kaplan-Meier analyses. A nomogram was used to predict the impact of NLRP12 on prognosis. Gene Ontology term analysis and gene set enrichment analysis (GSEA) were performed to identify the signaling pathways related to NLRP12 expression. Immune cells infiltration for NLRP12 was analyzed using single-sample GSEA. The relationship between NLRP12 and tumor-infiltrating immune cells (TICs) was investigated by a Wilcoxon rank sum test. The expression of NLRP12 were also further verified in EOC tissues and cell lines. Additionally, we confirmed the biological function of NLRP12 in vitro. RESULTS: NLRP12 was highly expressed in patients with EOC from TCGA. High NLRP12 expression correlated with poor disease-specific survival (p < 0.001) and overall survival (p < 0.001). Multivariate analysis revealed that NLRP12 expression was an independent prognostic marker for overall survival (p = 0.042). The C-indexes and calibration plots of the nomogram based on multivariate analysis indicated an effective predictive performance for EOC patients. GSEA showed enrichment of cell adhesion, tumorigenesis and immune response in the NLRP12 high expression group. Increased NLRP12 expression correlated positively with several TICs, including macrophages, neutrophils, T effector memory cells and immature dendritic cells (p < 0.001). In addition, NLRP12 silencing inhibited cell proliferation and migration in EOC cells. CONCLUSIONS: In conclusion, increased NLRP12 expression correlated significantly with poor survival and immune infiltration in EOC.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/genética , Neoplasias Ovarianas/genética , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estimativa de Kaplan-Meier , Peptídeos e Proteínas de Sinalização Intracelular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA