Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121786, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991338

RESUMO

Conservationists spend considerable resources to create and enhance wildlife habitat. Monitoring how species respond to these efforts helps managers allocate limited resources. However, monitoring efforts often encounter logistical challenges that are exacerbated as geographic extent increases. We used autonomous recording units (ARUs) and automated acoustic classification to mitigate the challenges of assessing Eastern Whip-poor-will (Antrostomus vociferus) response to forest management across the eastern USA. We deployed 1263 ARUs in forests with varying degrees of management intensity. Recordings were processed using an automated classifier and the resulting detection data were used to assess occupancy. Whip-poor-wills were detected at 401 survey locations. Across our study region, whip-poor-will occupancy decreased with latitude and elevation. At the landscape scale, occupancy decreased with the amount of impervious cover, increased with herbaceous cover and oak and evergreen forests, and exhibited a quadratic relationship with the amount of shrub-scrub cover. At the site-level, occupancy was negatively associated with basal area and brambles (Rubus spp.) and exhibited a quadratic relationship with woody stem density. Implementation of practices that create and sustain a mosaic of forest age classes and a diverse range of canopy closure within oak (Quercus spp.) dominated landscapes will have the highest probability of hosting whip-poor-wills. The use of ARUs and a machine learning classifier helped overcome challenges associated with monitoring a nocturnal species with a short survey window across a large spatial extent. Future monitoring efforts that combine ARU-based protocols and mappable fine-resolution structural vegetation data would likely further advance our understanding of whip-poor-will response to forest management.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Florestas , Animais , Conservação dos Recursos Naturais/métodos
2.
Proc Natl Acad Sci U S A ; 117(31): 18477-18488, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32669436

RESUMO

With the recent explosion in the size of libraries available for screening, virtual screening is positioned to assume a more prominent role in early drug discovery's search for active chemical matter. In typical virtual screens, however, only about 12% of the top-scoring compounds actually show activity when tested in biochemical assays. We argue that most scoring functions used for this task have been developed with insufficient thoughtfulness into the datasets on which they are trained and tested, leading to overly simplistic models and/or overtraining. These problems are compounded in the literature because studies reporting new scoring methods have not validated their models prospectively within the same study. Here, we report a strategy for building a training dataset (D-COID) that aims to generate highly compelling decoy complexes that are individually matched to available active complexes. Using this dataset, we train a general-purpose classifier for virtual screening (vScreenML) that is built on the XGBoost framework. In retrospective benchmarks, our classifier shows outstanding performance relative to other scoring functions. In a prospective context, nearly all candidate inhibitors from a screen against acetylcholinesterase show detectable activity; beyond this, 10 of 23 compounds have IC50 better than 50 µM. Without any medicinal chemistry optimization, the most potent hit has IC50 280 nM, corresponding to Ki of 173 nM. These results support using the D-COID strategy for training classifiers in other computational biology tasks, and for vScreenML in virtual screening campaigns against other protein targets. Both D-COID and vScreenML are freely distributed to facilitate such efforts.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Aprendizado de Máquina , Bibliotecas de Moléculas Pequenas/farmacologia , Bases de Dados de Proteínas , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/instrumentação , Humanos
3.
J Dairy Sci ; 105(10): 8177-8188, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055841

RESUMO

Dairy farmers are motivated to ensure cows become pregnant in an optimal and timely manner. Although timed artificial insemination (TAI) is a successful management tool in dairy cattle, it masks an animal's innate fertility performance, likely reducing the accuracy of genetic evaluations for fertility traits. Therefore, separating fertility traits based on the recorded management technique involved in the breeding process or adding the breeding protocol as an effect to the model can be viable approaches to address the potential bias caused by such management decisions. Nevertheless, there is a lack of specificity and uniformity in the recording of breeding protocol descriptions by dairy farmers. Therefore, this study investigated the use of 8 supervised machine learning algorithms to classify 1,835 unique breeding protocol descriptions from 981 herds into the following 2 classes: TAI or other than TAI. Our results showed that models that used a stacking classifier algorithm had the highest Matthews correlation coefficient (0.94 ± 0.04, mean ± SD) and maximized precision and recall (F1-score = 0.96 ± 0.03) on test data. Nonetheless, their F1-scores on test data were not different from 5 out of the other 7 algorithms considered. Altogether, results presented herein suggest machine learning algorithms can be used to produce robust models that correctly identify TAI protocols from dairy cattle breeding records, thus opening the opportunity for unbiased genetic evaluation of animals based on their natural fertility.


Assuntos
Fertilidade , Inseminação Artificial , Algoritmos , Animais , Canadá , Bovinos , Sincronização do Estro/métodos , Feminino , Hormônio Liberador de Gonadotropina , Inseminação Artificial/métodos , Inseminação Artificial/veterinária , Lactação , Aprendizado de Máquina , Gravidez , Progesterona
4.
Sensors (Basel) ; 22(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298065

RESUMO

Volcanic explosive eruptions inject several different types of particles and gasses into the atmosphere, giving rise to the formation and propagation of volcanic clouds. These can pose a serious threat to the health of people living near an active volcano and cause damage to air traffic. Many efforts have been devoted to monitor and characterize volcanic clouds. Satellite infrared (IR) sensors have been shown to be well suitable for volcanic cloud monitoring tasks. Here, a machine learning (ML) approach was developed in Google Earth Engine (GEE) to detect a volcanic cloud and to classify its main components using satellite infrared images. We implemented a supervised support vector machine (SVM) algorithm to segment a combination of thermal infrared (TIR) bands acquired by the geostationary MSG-SEVIRI (Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager). This ML algorithm was applied to some of the paroxysmal explosive events that occurred at Mt. Etna between 2020 and 2022. We found that the ML approach using a combination of TIR bands from the geostationary satellite is very efficient, achieving an accuracy of 0.86, being able to properly detect, track and map automatically volcanic ash clouds in near real-time.


Assuntos
Erupções Vulcânicas , Humanos , Atmosfera , Gases , Aprendizado de Máquina
5.
Vet Radiol Ultrasound ; 63(5): 580-592, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35415959

RESUMO

While MRI is the modality of choice for the diagnosis of longitudinal tears (LTs) of the deep digital flexor tendon (DDFT) of horses, differentiating between various grades of tears based on imaging characteristics is challenging due to overlapping imaging features. In this retrospective, exploratory, diagnostic accuracy study, a machine learning (ML) scheme was applied to link quantitative features and qualitative descriptors to leverage MRI characteristics of different grades of tearing of the DDFT of horses. A qualitative MRI characteristic scheme, combining tendon morphologic features, altered signal intensity, and synovial sheath distention, was used for LT classification with an excellent diagnostic accuracy of the high-grade tears but more limited accuracy for the detection of low-grade tears. A quantitative ML approach was followed to measure the contribution of 30 quantitative phenotypic features for characterizing and classifying tendinous tears. Among the 30 imaging features, boundary curvature represented by the standard deviation and maximum had the most significant discriminatory power (P < 0.05) between normal and abnormal tendons and could be used as an aid for classifying the different grades of LTs of DDFTs. Imaging analysis-based 3D interactive surface plot supports qualitative characterization of different grades of LTs of the DDFT through clearer visualization of the tendon in three dimensions and simple integration of two perspectives features (i.e., margin/distribution and intensity/distribution). A systematic approach combining quantitative features with qualitative analyses using ML was diagnostically beneficial in MRI characterization and in discriminating between different grades of LTs of the DDFT of horses.


Assuntos
Doenças dos Cavalos , Animais , Doenças dos Cavalos/diagnóstico , Cavalos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/veterinária , Estudos Retrospectivos , Tendões/diagnóstico por imagem
6.
Sensors (Basel) ; 20(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413952

RESUMO

This paper describes the steps involved in obtaining a set of relevant data sources and the accompanying method using software-based sensors to detect anomalous behavior in modern smartphones based on machine-learning classifiers. Three classes of models are investigated for classification: logistic regressions, shallow neural nets, and support vector machines. The paper details the design, implementation, and comparative evaluation of all three classes. If necessary, the approach could be extended to other computing devices, if appropriate changes were made to the software infrastructure, based upon mandatory capabilities of the underlying hardware.


Assuntos
Smartphone , Software , Modelos Logísticos , Redes Neurais de Computação , Máquina de Vetores de Suporte
7.
J Appl Biomech ; 36(5): 334-339, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32736341

RESUMO

The purposes of the study were (1) to compare postural sway between participants with Parkinson's disease (PD) and healthy controls and (2) to develop and validate an automated classification of PD postural control patterns using a machine learning approach. A total of 9 participants in the early stage of PD and 12 healthy controls were recruited. Participants were instructed to stand on a force plate and maintain stillness for 2 minutes with eyes open and eyes closed. The center of pressure data were collected at 50 Hz. Linear displacements, standard deviations, total distances, sway areas, and multiscale entropy of center of pressure were calculated and compared using mixed-model analysis of variance. Five supervised machine learning algorithms (ie, logistic regression, K-nearest neighbors, Naïve Bayes, decision trees, and random forest) were used to classify PD postural control patterns. Participants with PD exhibited greater center of pressure sway and variability compared with controls. The K-nearest neighbor method exhibited the best prediction performance with an accuracy rate of up to 0.86. In conclusion, participants with PD exhibited impaired postural stability and their postural sway features could be identified by machine learning algorithms.

8.
Forensic Sci Med Pathol ; 15(1): 67-74, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30649693

RESUMO

Single nucleotide polymorphism (SNP) profiling is an effective means of individual identification and ancestry inferences in forensic genetics. This study established a SNP panel for the simultaneous individual identification and ancestry assignment of Caucasian and four East and Southeast Asian populations. We analyzed 220 SNPs (125 autosomal, 17 X-chromosomal, 30 Y-chromosomal, and 48 mitochondrial SNPs) of the DNA samples from 563 unrelated individuals of five populations (89 Caucasian, 234 Taiwanese Han, 90 Filipino, 79 Indonesian and 71 Vietnamese) and 18 degraded DNA samples. Informativeness for assignment (In) was used to select ancestry informative SNPs (AISNPs). A machine learning classifier, support vector machine (SVM), was used for ancestry assignment. Of the 220 SNPs, 62 were individual identification SNPs (IISNPs) (51 autosomal and 11 X-chromosomal SNPs) and 191 were AISNPs (100 autosomal, 13 X-chromosomal, 30 Y-chromosomal, and 48 mitochondrial SNPs). The 51 autosomal IISNPs offered cumulative random match probabilities (cRMPs) ranging from 1.56 × 10-21 to 3.16 × 10-22 among these five populations. Using AISNPs with the SVM, the overall accuracy rate of ancestry inference achieved in the testing dataset between Caucasian, Taiwanese Han, and Filipino populations was 88.9%, whereas it was 70.0% between Caucasians and each of the four East and Southeast Asian populations. For the 18 degraded DNA samples with incomplete profiling, the accuracy rate of ancestry assignment was 94.4%. We have developed a 220-SNP panel for simultaneous individual identification and ethnic origin differentiation between Caucasian and the four East and Southeast Asian populations. This SNP panel may assist with DNA analysis of forensic casework.


Assuntos
Povo Asiático/genética , Impressões Digitais de DNA/métodos , Genética Populacional , Aprendizado de Máquina , Polimorfismo de Nucleotídeo Único , Ásia , Cromossomos Humanos X , Cromossomos Humanos Y , Degradação Necrótica do DNA , DNA Mitocondrial , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Estudos Retrospectivos , Máquina de Vetores de Suporte , População Branca/genética
9.
Heliyon ; 10(4): e25958, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390100

RESUMO

This study aimed to develop an automatic diagnostic scheme for bruxism, a sleep-related disorder characterized by teeth grinding and clenching. The aim was to improve on existing methods, which have been proven to be inefficient and challenging. We utilized a novel hybrid machine learning classifier, facilitated by the Weka tool, to diagnose bruxism from biological signals. The study processed and examined these biological signals by calculating the power spectral density. Data were categorized into normal or bruxism categories based on the EEG channel (C4-A1), and the sleeping phases were classified into wake (w) and rapid eye movement (REM) stages using the ECG channel (ECG1-ECG2). The classification resulted in a maximum specificity of 93% and an accuracy of 95% for the EEG-based diagnosis. The ECG-based classification yielded a supreme specificity of 87% and an accuracy of 96%. Furthermore, combining these phases using the EMG channel (EMG1-EMG2) achieved the highest specificity of 95% and accuracy of 98%. The ensemble Weka tool combined all three physiological signals EMG, ECG, and EEG, to classify the sleep stages and subjects. This integration increased the specificity and accuracy to 97% and 99%, respectively. This indicates that a more precise bruxism diagnosis can be obtained by including all three biological signals. The proposed method significantly improves bruxism diagnosis accuracy, potentially enhancing automatic home monitoring systems for this disorder. Future studies may expand this work by applying it to patients for practical use.

10.
Sci Rep ; 14(1): 15308, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961241

RESUMO

It has been imperative to study and stabilize cohesive soils for use in the construction of pavement subgrade and compacted landfill liners considering their unconfined compressive strength (UCS). As long as natural cohesive soil falls below 200 kN/m2 in strength, there is a structural necessity to improve its mechanical property to be suitable for the intended structural purposes. Subgrades and landfills are important environmental geotechnics structures needing the attention of engineering services due to their role in protecting the environment from associated hazards. In this research project, a comparative study and suitability assessment of the best analysis has been conducted on the behavior of the unconfined compressive strength (UCS) of cohesive soil reconstituted with cement and lime and mechanically stabilized at optimal compaction using multiple ensemble-based machine learning classification and symbolic regression techniques. The ensemble-based ML classification techniques are the gradient boosting (GB), CN2, naïve bayes (NB), support vector machine (SVM), stochastic gradient descent (SGD), k-nearest neighbor (K-NN), decision tree (Tree) and random forest (RF) and the artificial neural network (ANN) and response surface methodology (RSM) to estimate the (UCS, MPa) of cohesive soil stabilized with cement and lime. The considered inputs were cement (C), lime (Li), liquid limit (LL), plasticity index (PI), optimum moisture content (OMC), and maximum dry density (MDD). A total of 190 mix entries were collected from experimental exercises and partitioned into 74-26% train-test dataset. At the end of the model exercises, it was found that both GB and K-NN models showed the same excellent accuracy of 95%, while CN2, SVM, and Tree models shared the same level of accuracy of about 90%. RF and SGD models showed fair accuracy level of about 65-80% and finally (NB) badly producing an unacceptable low accuracy of 13%. The ANN and the RSM also showed closely matched accuracy to the SVM and the Tree. Both of correlation matrix and sensitivity analysis indicated that UCS is greatly affected by MDD, then the consistency limits and cement content, and lime content comes in the third place while the impact of (OMC) is almost neglected. This outcome can be applied in the field to obtain optimal compacted for a lime reconstituted soil considering the almost negligible impact of compactive moisture.

11.
Comput Biol Med ; 180: 108970, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096606

RESUMO

Huntington's disease (HD) is a complex neurodegenerative disorder with considerable heterogeneity in clinical manifestations. While CAG repeat length is a known predictor of disease severity, this heterogeneity suggests the involvement of additional genetic and environmental factors. Previously we revealed that HD primary fibroblasts exhibit unique features, including distinct nuclear morphology and perturbed actin cap, resembling characteristics seen in Hutchinson-Gilford Progeria Syndrome (HGPS). This study establishes a link between actin cap deficiency and cell motility in HD, which correlates with the HD patient disease severity. Here, we examined single-cell motility imaging features in HD primary fibroblasts to explore in depth the relationship between cell migration patterns and their respective HD patients' clinical severity status (premanifest, mild and severe). The single-cell analysis revealed a decline in overall cell motility in correlation with HD severity, being most prominent in severe HD subgroup and HGPS. Moreover, we identified seven distinct spatial clusters of cell migration in all groups, which their proportion varies within each group becoming a significant HD severity classifier between HD subgroups. Next, we investigated the relationship between Lamin B1 expression, serving as nuclear envelope morphology marker, and cell motility finding that changes in Lamin B1 levels are associated with specific motility patterns within HD subgroups. Based on these data we present an accurate machine learning classifier offering comprehensive exploration of cellular migration patterns and disease severity markers for future accurate drug evaluation opening new opportunities for personalized treatment approaches in this challenging disorder.


Assuntos
Movimento Celular , Fibroblastos , Doença de Huntington , Aprendizado de Máquina , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/genética , Masculino , Feminino , Pele/diagnóstico por imagem , Pele/patologia , Pele/metabolismo , Progressão da Doença , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Células Cultivadas , Adulto , Pessoa de Meia-Idade
12.
Sci Rep ; 14(1): 14571, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914599

RESUMO

The study aimed to achieve the following objectives: (1) to perform the fusion of thermal and visible tongue images with various fusion rules of discrete wavelet transform (DWT) to classify diabetes and normal subjects; (2) to obtain the statistical features in the required region of interest from the tongue image before and after fusion; (3) to distinguish the healthy and diabetes using fused tongue images based on deep and machine learning algorithms. The study participants comprised of 80 normal subjects and age- and sex-matched 80 diabetes patients. The biochemical tests such as fasting glucose, postprandial, Hba1c are taken for all the participants. The visible and thermal tongue images are acquired using digital single lens reference camera and thermal infrared cameras, respectively. The digital and thermal tongue images are fused based on the wavelet transform method. Then Gray level co-occurrence matrix features are extracted individually from the visible, thermal, and fused tongue images. The machine learning classifiers and deep learning networks such as VGG16 and ResNet50 was used to classify the normal and diabetes mellitus. Image quality metrics are implemented to compare the classifiers' performance before and after fusion. Support vector machine outperformed the machine learning classifiers, well after fusion with an accuracy of 88.12% compared to before the fusion process (Thermal-84.37%; Visible-63.1%). VGG16 produced the classification accuracy of 94.37% after fusion and attained 90.62% and 85% before fusion of individual thermal and visible tongue images, respectively. Therefore, this study results indicates that fused tongue images might be used as a non-contact elemental tool for pre-screening type II diabetes mellitus.


Assuntos
Diabetes Mellitus , Aprendizado de Máquina , Língua , Humanos , Língua/diagnóstico por imagem , Língua/patologia , Masculino , Feminino , Adulto , Processamento de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Análise de Ondaletas , Máquina de Vetores de Suporte , Glicemia/análise , Algoritmos
13.
Heliyon ; 9(11): e22203, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045118

RESUMO

This paper presents a transfer and deep learning based approach to the classification of Sickle Cell Disease (SCD). Five transfer learning models such as ResNet-50, AlexNet, MobileNet, VGG-16 and VGG-19, and a sequential convolutional neural network (CNN) have been implemented for SCD classification. ErythrocytesIDB dataset has been used for training and testing the models. In order to make up for the data insufficiency of the erythrocytesIDB dataset, advanced image augmentation techniques are employed to ensure the robustness of the dataset, enhance dataset diversity and improve the accuracy of the models. An ablation experiment using Random Forest and Support Vector Machine (SVM) classifiers along with various hyperparameter tweaking was carried out to determine the contribution of different model elements on their predicted accuracy. A rigorous statistical analysis was carried out for evaluation and to further evaluate the model's robustness, an adversarial attack test was conducted. The experimental results demonstrate compelling performance across all models. After performing the statistical tests, it was observed that MobileNet showed a significant improvement (p = 0.0229), while other models (ResNet-50, AlexNet, VGG-16, VGG-19) did not (p > 0.05). Notably, the ResNet-50 model achieves remarkable precision, recall, and F1-score values of 100 % for circular, elongated, and other cell shapes when experimented with a smaller dataset. The AlexNet model achieves a balanced precision (98 %) and recall (99 %) for circular and elongated shapes. Meanwhile, the other models showcase competitive performance.

14.
Breast Dis ; 41(1): 221-228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35404267

RESUMO

OBJECTIVE: Preoperative diagnosis of phyllodes tumor (PT) is challenging, core-needle biopsy (CNB) has a significant rate of understaging, resulting in suboptimal surgical planification. We hypothesized that the association of imaging data to CNB would improve preoperative diagnostic accuracy compared to biopsy alone. METHODS: In this retrospective pilot study, we included 59 phyllodes tumor with available preoperative imaging, CNB and surgical specimen pathology. RESULTS: Two ultrasound features: tumor heterogeneity and tumor shape were associated with tumor grade, independently of CNB results. Using a machine learning classifier, the association of ultrasound features with CNB results improved accuracy of preoperative tumor classification up to 84%. CONCLUSION: An integrative approach of preoperative diagnosis, associating ultrasound features and CNB, improves preoperative diagnosis and could thus optimize surgical planification.


Assuntos
Neoplasias da Mama , Tumor Filoide , Biópsia com Agulha de Grande Calibre/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Feminino , Humanos , Tumor Filoide/diagnóstico por imagem , Tumor Filoide/cirurgia , Projetos Piloto , Estudos Retrospectivos
15.
Health Syst (Basingstoke) ; 11(4): 303-333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325422

RESUMO

The paper proposes a hybrid metaheuristic algorithm known as harmony search and simulated annealing (HS-SA) for accurate and precise breast malignancy disclosure by integrating harmony search (HS) and simulated annealing (SA) optimisation methods. An enhanced wavelet-based contourlet transform (WBCT) procedure for mining the highlights of the region of interest (ROI) is explored, that allows execution upgradation over other standard procedures. The anticipated HS-SA algorithm aims to reduce the feature dimensions and assemble at the unparalleled optimal feature subset. The SVM classifier fed with the picke.d feature subsets and assisted by varied kernel functions upheld its classification capacities in contrast with the conformist machine learning classification and optimisation methods. The portrayed computer-aided diagnosis (CAD) model is confronted by evaluating its learning capability on two different breast mammographic datasets i) benchmark BCDR-F03 dataset and ii) local mammographic dataset. Preliminary propagations, experimental outcomes, and quantifiable assessments likewise demonstrate that the proposed model is pragmatic and favourable for the automated breast malignancy findings with optimal performance and fewer overheads. The discoveries show that the proposed CAD system (HS-SA+Kernel SVM) is superior to various characterisation accuracy techniques with an accuracy of 99.89% for the local mammographic dataset and 99.76% for benchmark BCDR-F03 dataset, AUC of 99.41% for the local mammographic dataset and 99.21% for reference BCDR-F03 dataset while keeping the element space restricted to only seven feature subsets and computational prerequisites as low as is judicious.

16.
Biomed Tech (Berl) ; 67(2): 105-117, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35363448

RESUMO

In recent years surface electromyography signals-based machine learning models are rapidly establishing. The efficacy of prosthetic arm growth for transhumeral amputees is aided by efficient classifiers. The paper aims to propose a stacking classifier-based classification system for sEMG shoulder movements. It presents the possibility of various shoulder motions classification of transhumeral amputees. To improve the system performance, adaptive threshold method and wavelet transformation have been applied for features extraction. Six different classifiers Support Vector Machines (SVM), Tree, Random Forest (RF), K-Nearest Neighbour (KNN), AdaBoost and Naïve Bayes (NB) are designed to extract the sEMG data classification accuracy. With cross-validation, the accuracy of RF, Tree and Ada Boost is 97%, 92% and 92% respectively. Stacking classifiers provides an accuracy as 99.4% after combining the best predicted multiple classifiers.


Assuntos
Amputados , Membros Artificiais , Algoritmos , Braço , Teorema de Bayes , Eletromiografia/métodos , Humanos , Ombro , Máquina de Vetores de Suporte
17.
Front Plant Sci ; 13: 1102341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726669

RESUMO

The growth of the fusarium head blight (FHB) pathogen at the grain formation stage is a deadly threat to wheat production through disruption of the photosynthetic processes of wheat spikes. Real-time nondestructive and frequent proxy detection approaches are necessary to control pathogen propagation and targeted fungicide application. Therefore, this study examined the ch\lorophyll-related phenotypes or features from spectral and chlorophyll fluorescence for FHB monitoring. A methodology is developed using features extracted from hyperspectral reflectance (HR), chlorophyll fluorescence imaging (CFI), and high-throughput phenotyping (HTP) for asymptomatic to symptomatic disease detection from two consecutive years of experiments. The disease-sensitive features were selected using the Boruta feature-selection algorithm, and subjected to machine learning-sequential floating forward selection (ML-SFFS) for optimum feature combination. The results demonstrated that the biochemical parameters, HR, CFI, and HTP showed consistent alterations during the spike-pathogen interaction. Among the selected disease sensitive features, reciprocal reflectance (RR=1/700) demonstrated the highest coefficient of determination (R 2) of 0.81, with root mean square error (RMSE) of 11.1. The multivariate k-nearest neighbor model outperformed the competing multivariate and univariate models with an overall accuracy of R 2 = 0.92 and RMSE = 10.21. A combination of two to three kinds of features was found optimum for asymptomatic disease detection using ML-SFFS with an average classification accuracy of 87.04% that gradually improved to 95% for a disease severity level of 20%. The study demonstrated the fusion of chlorophyll-related phenotypes with the ML-SFFS might be a good choice for crop disease detection.

18.
Comput Biol Med ; 146: 105505, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35477047

RESUMO

Non-melanoma skin cancers (NMSCs) are the fifth most common type of cancer worldwide, affecting both men and women. Each year, more than a million new occurrences of NMSC are estimated, with Squamous Cell Carcinoma (SCC) representing approximately 20% of all skin malignancies. The purpose of this study was to find potential diagnostic biomarkers for SCC by application of eXplainable Artificial Intelligence (XAI) on XGBoost machine learning (ML) models trained on binary classification datasets comprising the expression data of 40 SCC, 38 AK, and 46 normal healthy skin samples. After successfully incorporating SHAP values into the ML models, 23 significant genes were identified and were found to be associated with the progression of SCC. These identified genes may serve as diagnostic and prognostic biomarkers in patients with SCC.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Inteligência Artificial , Biomarcadores , Carcinoma Basocelular/diagnóstico , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Feminino , Humanos , Masculino , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
19.
PeerJ Comput Sci ; 8: e898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494828

RESUMO

Thyroid disease is the general concept for a medical problem that prevents one's thyroid from producing enough hormones. Thyroid disease can affect everyone-men, women, children, adolescents, and the elderly. Thyroid disorders are detected by blood tests, which are notoriously difficult to interpret due to the enormous amount of data necessary to forecast results. For this reason, this study compares eleven machine learning algorithms to determine which one produces the best accuracy for predicting thyroid risk accurately. This study utilizes the Sick-euthyroid dataset, acquired from the University of California, Irvine's machine learning repository, for this purpose. Since the target variable classes in this dataset are mostly one, the accuracy score does not accurately indicate the prediction outcome. Thus, the evaluation metric contains accuracy and recall ratings. Additionally, the F1-score produces a single value that balances the precision and recall when an uneven distribution class exists. Finally, the F1-score is utilized to evaluate the performance of the employed machine learning algorithms as it is one of the most effective output measurements for unbalanced classification problems. The experiment shows that the ANN Classifier with an F1-score of 0.957 outperforms the other nine algorithms in terms of accuracy.

20.
Concurr Comput ; : e7286, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36247093

RESUMO

How will the newly discovered coronavirus (COVID-19) affect the world and what will be its global impact? For answering this question, we will require a prediction of overall recoveries and fatalities, as well as a reliable prognosis of coronavirus cases. Predicting, however, requires an ample total of past data related to it. On any particular day, the prediction is unclear since events in the future rarely repeat themselves the way that they did in the past. Furthermore, forecasts and predictions are determined by the absolute interests, accuracy of the data, and prophesied variables. In addition, psychological factors play an enormous role in how people perceive and react to the danger from the disease and therefore the fear that it is going to affect them personally. This research paper advances an unbiased method for predicting the increase of the COVID-19 employing a simple, but powerful method to do so. Assumed that the data are accurate and reliable which the longer term will still follow an equivalent disease pattern, our projections intimate with a large association. Within the COVID-19 cases were documented, in contingency, there is a steady increase. The hazards are far away from symmetric, as underestimating a pandemic's spread and failing to do enough to prevent it is far a lot worse than overspending and being too cautious when it will not be needed. This paper illustrates the timeline of a live forecasting study with huge implied implications for devising and decision-making and gives unbiased predictions on COVID-19 confirmed cases, recovered cases, deaths, and ongoing cases are shown on a continental map using data science and machine learning (ML) approaches. Utilizing these ML-based techniques, the proposed system predicts the accurate COVID-19 cases and gives better performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA