Your browser doesn't support javascript.
loading
Molecular anatomy of CCR5 engagement by physiologic and viral chemokines and HIV-1 envelope glycoproteins: differences in primary structural requirements for RANTES, MIP-1 alpha, and vMIP-II Binding.
Navenot, J M; Wang, Z X; Trent, J O; Murray, J L; Hu, Q X; DeLeeuw, L; Moore, P S; Chang, Y; Peiper, S C.
Afiliación
  • Navenot JM; Brown Cancer Center, University of Louisville, Louisville, KY, USA.
J Mol Biol ; 313(5): 1181-93, 2001 Nov 09.
Article en En | MEDLINE | ID: mdl-11700073
Molecular analysis of CCR5, the cardinal coreceptor for HIV-1 infection, has implicated the N-terminal extracellular domain (N-ter) and regions vicinal to the second extracellular loop (ECL2) in this activity. It was shown that residues in the N-ter are necessary for binding of the physiologic ligands, RANTES (CCL5) and MIP-1 alpha (CCL3). vMIP-II, encoded by the Kaposi's sarcoma-associated herpesvirus, is a high affinity CCR5 antagonist, but lacks efficacy as a coreceptor inhibitor. Therefore, we compared the mechanism for engagement by vMIP-II of CCR5 to its interaction with physiologic ligands. RANTES, MIP-1 alpha, and vMIP-II bound CCR5 at high affinity, but demonstrated partial cross-competition. Characterization of 15 CCR5 alanine scanning mutants of charged extracellular amino acids revealed that alteration of acidic residues in the distal N-ter abrogated binding of RANTES, MIP-1 alpha, and vMIP-II. Whereas mutation of residues in ECL2 of CCR5 dramatically reduced the binding of RANTES and MIP-1 alpha and their ability to induce signaling, interaction with vMIP-II was not altered by any mutation in the exoloops of the receptor. Paradoxically, monoclonal antibodies to N-ter epitopes did not block chemokine binding, but those mapped to ECL2 were effective inhibitors. A CCR5 chimera with the distal N-ter residues of CXCR2 bound MIP-1 alpha and vMIP-II with an affinity similar to that of the wild-type receptor. Engagement of CCR5 by vMIP-II, but not RANTES or MIP-1 alpha blocked the binding of monoclonal antibodies to the receptor, providing additional evidence for a distinct mechanism for viral chemokine binding. Analysis of the coreceptor activity of randomly generated mouse-human CCR5 chimeras implicated residues in ECL2 between H173 and V197 in this function. RANTES, but not vMIP-II blocked CCR5 M-tropic coreceptor activity in the fusion assay. The insensitivity of vMIP-II binding to mutations in ECL2 provides a potential rationale to its inefficiency as an antagonist of CCR5 coreceptor activity. These findings suggest that the molecular anatomy of CCR5 binding plays a critical role in antagonism of coreceptor activity.
Asunto(s)
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas del Envoltorio Viral / VIH-1 / Quimiocina CCL5 / Quimiocinas / Proteínas Inflamatorias de Macrófagos / Receptores CCR5 Tipo de estudio: Prognostic_studies Idioma: En Revista: J Mol Biol Año: 2001 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas del Envoltorio Viral / VIH-1 / Quimiocina CCL5 / Quimiocinas / Proteínas Inflamatorias de Macrófagos / Receptores CCR5 Tipo de estudio: Prognostic_studies Idioma: En Revista: J Mol Biol Año: 2001 Tipo del documento: Article País de afiliación: Estados Unidos