Your browser doesn't support javascript.
loading
Identification of T-type alpha1H Ca2+ channels (Ca(v)3.2) in major pelvic ganglion neurons.
Lee, Jung-Ha; Kim, Eun-Gi; Park, Byong-Gon; Kim, Kyoung-Han; Cha, Seung-Kyu; Kong, In Deok; Lee, Joong-Woo; Jeong, Seong-Woo.
Afiliación
  • Lee JH; Department of Life Science, Sogang University, Shinsu-1Dong, Seoul 121-742, Republic of Korea.
J Neurophysiol ; 87(6): 2844-50, 2002 Jun.
Article en En | MEDLINE | ID: mdl-12037187
ABSTRACT
Among autonomic neurons, sympathetic neurons of the major pelvic ganglia (MPG) are unique by expressing low-voltage-activated T-type Ca2+ channels. To date, the T-type Ca2+ channels have been poorly characterized, although they are believed to be potentially important for functions of the MPG neurons. In the present study, thus we investigated characteristics and molecular identity of the T-type Ca2+ channels using patch-clamp and RT-PCR techniques. When the external solution contained 10 mM Ca2+ as a charge carrier, T-type Ca2+ currents were first activated at -50 mV and peaked around -20 mV. Besides the low-voltage activation, T-type Ca2+ currents displayed typical characteristics including transient activation/inactivation and voltage-dependent slow deactivation. Overlap of the activation and inactivation curves generated a prominent window current around resting membrane potentials. Replacement of the external Ca2+ with 10 mM Ba2+ did not affect the amplitudes of T-type Ca2+ currents. Mibefradil, a known T-type Ca2+ channel antagonist, depressed T-type Ca2+ currents in a concentration-dependent manner (IC50 = 3 microM). Application of Ni2+ also produced a concentration-dependent blockade of T-type Ca2+ currents with an IC50 of 10 microM. The high sensitivity to Ni2+ implicates alpha1H in generating the T-type Ca2+ currents in MPG neurons. RT-PCR experiments showed that MPG neurons predominantly express mRNAs encoding splicing variants of alpha1H (called pelvic Ta and Tb, short and long forms of alpha1H, respectively). Finally, we tested whether the low-threshold spikes could be generated in sympathetic MPG neurons expressing T-type Ca2+ channels. When hyperpolarizing currents were injected under a current-clamp mode, sympathetic neurons produced postanodal rebound spikes, while parasympathetic neurons were silent. The number of the rebound spikes was reduced by 10 microM Ni2+ that blocked 50% of T-type Ca2+ currents and had a little effect on HVA Ca2+ currents in sympathetic MPG neurons. Furthermore, generation of the rebound spikes was completely prevented by 100 microM Ni2+ that blocked most of the T-type Ca2+ currents. In conclusions, T-type Ca2+ currents in MPG neurons mainly arise from alpha1H among the three isoforms (alpha1G, alpha1H, and alpha1I) and may contribute to generation of low-threshold spikes in sympathetic MPG neurons.
Asunto(s)
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Canales de Calcio Tipo T / Ganglios Simpáticos / Neuronas Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals Idioma: En Revista: J Neurophysiol Año: 2002 Tipo del documento: Article
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Canales de Calcio Tipo T / Ganglios Simpáticos / Neuronas Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals Idioma: En Revista: J Neurophysiol Año: 2002 Tipo del documento: Article