Combined wavelet transform-artificial neural network use in tablet active content determination by near-infrared spectroscopy.
Anal Chim Acta
; 591(2): 219-24, 2007 May 22.
Article
en En
| MEDLINE
| ID: mdl-17481412
The pharmaceutical industry faces increasing regulatory pressure to optimize quality control. Content uniformity is a basic release test for solid dosage forms. To accelerate test throughput and comply with the Food and Drug Administration's process analytical technology initiative, attention is increasingly turning to nondestructive spectroscopic techniques, notably near-infrared (NIR) spectroscopy (NIRS). However, validation of NIRS using requisite linearity and standard error of prediction (SEP) criteria remains a challenge. This study applied wavelet transformation of the NIR spectra of a commercial tablet to build a model using conventional partial least squares (PLS) regression and an artificial neural network (ANN). Wavelet coefficients in the PLS and ANN models reduced SEP by up to 60% compared to PLS models using mathematical spectra pretreatment. ANN modeling yielded high-linearity calibration and a correlation coefficient exceeding 0.996.
Buscar en Google
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Comprimidos
/
Preparaciones Farmacéuticas
/
Redes Neurales de la Computación
/
Espectroscopía Infrarroja Corta
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Anal Chim Acta
Año:
2007
Tipo del documento:
Article
País de afiliación:
Suiza