Your browser doesn't support javascript.
loading
Gene prediction in metagenomic fragments: a large scale machine learning approach.
Hoff, Katharina J; Tech, Maike; Lingner, Thomas; Daniel, Rolf; Morgenstern, Burkhard; Meinicke, Peter.
Afiliación
  • Hoff KJ; Abteilung Bioinformatik, Georg-August-Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany. katharina@gobics.de
BMC Bioinformatics ; 9: 217, 2008 Apr 28.
Article en En | MEDLINE | ID: mdl-18442389
BACKGROUND: Metagenomics is an approach to the characterization of microbial genomes via the direct isolation of genomic sequences from the environment without prior cultivation. The amount of metagenomic sequence data is growing fast while computational methods for metagenome analysis are still in their infancy. In contrast to genomic sequences of single species, which can usually be assembled and analyzed by many available methods, a large proportion of metagenome data remains as unassembled anonymous sequencing reads. One of the aims of all metagenomic sequencing projects is the identification of novel genes. Short length, for example, Sanger sequencing yields on average 700 bp fragments, and unknown phylogenetic origin of most fragments require approaches to gene prediction that are different from the currently available methods for genomes of single species. In particular, the large size of metagenomic samples requires fast and accurate methods with small numbers of false positive predictions. RESULTS: We introduce a novel gene prediction algorithm for metagenomic fragments based on a two-stage machine learning approach. In the first stage, we use linear discriminants for monocodon usage, dicodon usage and translation initiation sites to extract features from DNA sequences. In the second stage, an artificial neural network combines these features with open reading frame length and fragment GC-content to compute the probability that this open reading frame encodes a protein. This probability is used for the classification and scoring of gene candidates. With large scale training, our method provides fast single fragment predictions with good sensitivity and specificity on artificially fragmented genomic DNA. Additionally, this method is able to predict translation initiation sites accurately and distinguishes complete from incomplete genes with high reliability. CONCLUSION: Large scale machine learning methods are well-suited for gene prediction in metagenomic DNA fragments. In particular, the combination of linear discriminants and neural networks is promising and should be considered for integration into metagenomic analysis pipelines. The data sets can be downloaded from the URL provided (see Availability and requirements section).
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN Bacteriano / Reconocimiento de Normas Patrones Automatizadas / Inteligencia Artificial / Mapeo Cromosómico / Genoma Bacteriano / Análisis de Secuencia de ADN Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2008 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN Bacteriano / Reconocimiento de Normas Patrones Automatizadas / Inteligencia Artificial / Mapeo Cromosómico / Genoma Bacteriano / Análisis de Secuencia de ADN Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2008 Tipo del documento: Article País de afiliación: Alemania