Your browser doesn't support javascript.
loading
A multi-level spatial clustering algorithm for detection of disease outbreaks.
Que, Jialan; Tsui, Fu-Chiang.
Afiliación
  • Que J; RODS Laboratory, Department of Biomedical Informatics,University of Pittsburgh, USA.
AMIA Annu Symp Proc ; : 611-5, 2008 Nov 06.
Article en En | MEDLINE | ID: mdl-18999304
In this paper, we proposed a Multi-level Spatial Clustering (MSC) algorithm for rapid detection of emerging disease outbreaks prospectively. We used the semi-synthetic data for algorithm evaluation. We applied BARD algorithm [1] to generate outbreak counts for simulation of aerosol release of Anthrax. We compared MSC with two spatial clustering algorithms: Kulldorff's spatial scan statistic [2] and Bayesian spatial scan statistic [3]. The evaluation results showed that the areas under ROC had no significant difference among the three algorithms, so did the areas under AMOC. MSC demonstrated significant computational efficiency (100 + times faster) and higher PPV. However, MSC showed 2-6 hours delay on average for outbreak detection when the false alarm rate was lower than 1 false alarm per 4 weeks. We concluded that the MSC algorithm is computationally efficient and it is able to provide more precise and compact clusters in a timely manner while keeping high detection accuracy (cluster sensitivity) and low false alarm rates.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Análisis por Conglomerados / Modelos de Riesgos Proporcionales / Vigilancia de la Población / Enfermedades Transmisibles / Brotes de Enfermedades / Medición de Riesgo Tipo de estudio: Diagnostic_studies / Etiology_studies / Incidence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Revista: AMIA Annu Symp Proc Asunto de la revista: INFORMATICA MEDICA Año: 2008 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Análisis por Conglomerados / Modelos de Riesgos Proporcionales / Vigilancia de la Población / Enfermedades Transmisibles / Brotes de Enfermedades / Medición de Riesgo Tipo de estudio: Diagnostic_studies / Etiology_studies / Incidence_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Revista: AMIA Annu Symp Proc Asunto de la revista: INFORMATICA MEDICA Año: 2008 Tipo del documento: Article País de afiliación: Estados Unidos