A multi-level spatial clustering algorithm for detection of disease outbreaks.
AMIA Annu Symp Proc
; : 611-5, 2008 Nov 06.
Article
en En
| MEDLINE
| ID: mdl-18999304
In this paper, we proposed a Multi-level Spatial Clustering (MSC) algorithm for rapid detection of emerging disease outbreaks prospectively. We used the semi-synthetic data for algorithm evaluation. We applied BARD algorithm [1] to generate outbreak counts for simulation of aerosol release of Anthrax. We compared MSC with two spatial clustering algorithms: Kulldorff's spatial scan statistic [2] and Bayesian spatial scan statistic [3]. The evaluation results showed that the areas under ROC had no significant difference among the three algorithms, so did the areas under AMOC. MSC demonstrated significant computational efficiency (100 + times faster) and higher PPV. However, MSC showed 2-6 hours delay on average for outbreak detection when the false alarm rate was lower than 1 false alarm per 4 weeks. We concluded that the MSC algorithm is computationally efficient and it is able to provide more precise and compact clusters in a timely manner while keeping high detection accuracy (cluster sensitivity) and low false alarm rates.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Análisis por Conglomerados
/
Modelos de Riesgos Proporcionales
/
Vigilancia de la Población
/
Enfermedades Transmisibles
/
Brotes de Enfermedades
/
Medición de Riesgo
Tipo de estudio:
Diagnostic_studies
/
Etiology_studies
/
Incidence_studies
/
Prognostic_studies
/
Risk_factors_studies
/
Screening_studies
Idioma:
En
Revista:
AMIA Annu Symp Proc
Asunto de la revista:
INFORMATICA MEDICA
Año:
2008
Tipo del documento:
Article
País de afiliación:
Estados Unidos