Your browser doesn't support javascript.
loading
Correlative linear neighborhood propagation for video annotation.
Tang, Jinhui; Hua, Xian-Sheng; Wang, Meng; Gu, Zhiwei; Qi, Guo-Jun; Wu, Xiuqing.
Afiliación
  • Tang J; Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China. jhtang@mail.ustc.edu.cn
IEEE Trans Syst Man Cybern B Cybern ; 39(2): 409-16, 2009 Apr.
Article en En | MEDLINE | ID: mdl-19095553
Recently, graph-based semisupervised learning methods have been widely applied in multimedia research area. However, for the application of video semantic annotation in multilabel setting, these methods neglect an important characteristic of video data: The semantic concepts appear correlatively and interact naturally with each other rather than exist in isolation. In this paper, we adapt this semantic correlation into graph-based semisupervised learning and propose a novel method named correlative linear neighborhood propagation to improve annotation performance. Experiments conducted on the Text REtrieval Conference VIDeo retrieval evaluation data set have demonstrated its effectiveness and efficiency.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: IEEE Trans Syst Man Cybern B Cybern Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2009 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: IEEE Trans Syst Man Cybern B Cybern Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2009 Tipo del documento: Article País de afiliación: China