Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI.
Magn Reson Imaging
; 28(2): 235-44, 2010 Feb.
Article
en En
| MEDLINE
| ID: mdl-19695810
Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is currently the dominant technique for non-invasive investigation of brain functions. One of the challenges with BOLD fMRI, particularly at high fields, is compensation for the effects of spatiotemporally varying magnetic field inhomogeneities (DeltaB(0)) caused by normal subject respiration and, in some studies, movement of the subject during the scan to perform tasks related to the functional paradigm. The presence of DeltaB(0) during data acquisition distorts reconstructed images and introduces extraneous fluctuations in the fMRI time series that decrease the BOLD contrast-to-noise ratio. Optimization of the fMRI data-processing pipeline to compensate for geometric distortions is of paramount importance to ensure high quality of fMRI data. To investigate DeltaB(0) caused by subject movement, echo-planar imaging scans were collected with and without concurrent motion of a phantom arm. The phantom arm was constructed and moved by the experimenter to emulate forearm motions while subjects remained still and observed a visual stimulation paradigm. These data were then subjected to eight different combinations of preprocessing steps. The best preprocessing pipeline included navigator correction, a complex phase regressor and spatial smoothing. The synergy between navigator correction and phase regression reduced geometric distortions better than either step in isolation and preconditioned the data to make them more amenable to the benefits of spatial smoothing. The combination of these steps provided a 10% increase in t-statistics compared to only navigator correction and spatial smoothing and reduced the noise and false activations in regions where no legitimate effects would occur.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Mapeo Encefálico
/
Imagen por Resonancia Magnética
/
Interpretación de Imagen Asistida por Computador
/
Aumento de la Imagen
/
Artefactos
/
Movimiento
Tipo de estudio:
Diagnostic_studies
/
Evaluation_studies
Límite:
Humans
Idioma:
En
Revista:
Magn Reson Imaging
Año:
2010
Tipo del documento:
Article
País de afiliación:
Canadá