Your browser doesn't support javascript.
loading
Above-room-temperature ferroelectricity in a single-component molecular crystal.
Horiuchi, Sachio; Tokunaga, Yusuke; Giovannetti, Gianluca; Picozzi, Silvia; Itoh, Hirotake; Shimano, Ryo; Kumai, Reiji; Tokura, Yoshinori.
Afiliación
  • Horiuchi S; National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan. s-horiuchi@aist.go.jp
Nature ; 463(7282): 789-92, 2010 Feb 11.
Article en En | MEDLINE | ID: mdl-20148035
ABSTRACT
Ferroelectrics are electro-active materials that can store and switch their polarity (ferroelectricity), sense temperature changes (pyroelectricity), interchange electric and mechanical functions (piezoelectricity), and manipulate light (through optical nonlinearities and the electro-optic effect) all of these functions have practical applications. Topological switching of pi-conjugation in organic molecules, such as the keto-enol transformation, has long been anticipated as a means of realizing these phenomena in molecular assemblies and crystals. Croconic acid, an ingredient of black dyes, was recently found to have a hydrogen-bonded polar structure in a crystalline state. Here we demonstrate that application of an electric field can coherently align the molecular polarities in crystalline croconic acid, as indicated by an increase of optical second harmonic generation, and produce a well-defined polarization hysteresis at room temperature. To make this simple pentagonal molecule ferroelectric, we switched the pi-bond topology using synchronized proton transfer instead of rigid-body rotation. Of the organic ferroelectrics, this molecular crystal exhibits the highest spontaneous polarization ( approximately 20 muC cm(-2)) in spite of its small molecular size, which is in accord with first-principles electronic-structure calculations. Such high polarization, which persists up to 400 K, may find application in active capacitor and nonlinear optics elements in future organic electronics.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nature Año: 2010 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Nature Año: 2010 Tipo del documento: Article País de afiliación: Japón