Your browser doesn't support javascript.
loading
Characterizing antibody cross-reactivity for immunoaffinity purification of analytes prior to multiplexed liquid chromatography-tandem mass spectrometry.
Laha, Thomas J; Strathmann, Frederick G; Wang, Zhican; de Boer, Ian H; Thummel, Kenneth E; Hoofnagle, Andrew N.
Afiliación
  • Laha TJ; Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
Clin Chem ; 58(12): 1711-6, 2012 Dec.
Article en En | MEDLINE | ID: mdl-22968104
BACKGROUND: Immunoassays for 1α,25-dihydroxyvitamin D [1α,25(OH)(2)D] lack analytical specificity. We characterized the cross-reactivity of an anti-1α,25(OH)(2)D antibody with purified vitamin D metabolites and used these data to map the chemical features of 1α,25(OH)(2)D that are important for antibody binding. Additionally, we hypothesized that when combined with isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS), antibody cross-reactivity could be used to semiselectively enrich for structurally similar metabolites of vitamin D in a multiplexed assay. METHODS: Sample preparation consisted of immunoaffinity enrichment with a solid-phase anti-1α,25(OH)(2)D antibody and derivatization. Analytes were quantified with LC-MS/MS. Supplementation and recovery studies were performed for 11 vitamin D metabolites. We developed a method for simultaneously quantifying 25(OH)D(2), 25(OH)D(3), 24,25(OH)(2)D(3), 1α,25(OH)(2)D(2), and 1α,25(OH)(2)D(3) that included deuterated internal standards for each analyte. RESULTS: The important chemical features of vitamin D metabolites for binding to the antibody were (a) native orientation of the hydroxyl group on carbon C3 in the A ring, (b) the lack of substitution at carbon C4 in the A ring, and (c) the overall polarity of the vitamin D metabolite. The multiplexed method had lower limits of quantification (20% CV) of 0.2 ng/mL, 1.0 ng/mL, 0.06 ng/mL, 3.4 pg/mL, and 2.8 pg/mL for 25(OH)D(2), 25(OH)D(3), 24,25(OH)(2)D(3), 1α,25(OH)(2)D(2), and 1α,25(OH)(2)D(3), respectively. Method comparisons to 3 other LC-MS/MS methods yielded an r(2) value >0.9, an intercept less than the lower limit of quantification, and a slope statistically indistinguishable from 1.0. CONCLUSIONS: LC-MS/MS can be used to characterize antibody cross-reactivity, a conclusion supported by our multiplexed assay for 5 vitamin D metabolites with immunoenrichment in a targeted metabolomic assay.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Hidroxicolecalciferoles / Anticuerpos Límite: Humans Idioma: En Revista: Clin Chem Asunto de la revista: QUIMICA CLINICA Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Hidroxicolecalciferoles / Anticuerpos Límite: Humans Idioma: En Revista: Clin Chem Asunto de la revista: QUIMICA CLINICA Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos