Your browser doesn't support javascript.
loading
Formation of self-assembled monolayers with homogeneously mixed, loosely packed alkyl groups using unsymmetrical dialkyldithiophosphinic acids.
San Juan, Ronan R; Carmichael, Tricia Breen.
Afiliación
  • San Juan RR; Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4.
Langmuir ; 28(51): 17701-8, 2012 Dec 21.
Article en En | MEDLINE | ID: mdl-23199153
We report the formation and characterization of self-assembled monolayers (SAMs) formed from unsymmetrical dialkyldithiophosphinic acid (R(1)R(2)DTPA) adsorbates [CH(3)(CH(2))(n)][CH(3)(CH(2))(15)]P(S)SH (n = 5, 9) on gold substrates. These SAMs were characterized using X-ray photoelectron spectroscopy, reflection-absorption infrared spectroscopy, contact angle goniometry, electrochemical impedance spectroscopy, and atomic force microscopy. Unsymmetrical R(1)R(2)DTPA SAMs contain mixtures of bidentate and monodentate adsorbates, similar to SAMs formed from analogous symmetrical R(2)DTPAs. In unsymmetrical R(1)R(2)DTPA SAMs, however, the short alkyl substituent of the R(1)R(2)DTPA adsorbates enforces spacing between the long hexadecyl substituents, which disrupts van der Waals interactions and causes the hexadecyl groups to be loosely packed and disordered. The structure of the SAM depends on the length of the short alkyl substituent: The hexyl chains in the C(6)C(16)DTPA SAM are not long enough to stabilize the alkyl zone close to the substrate, leading to highly disordered SAMs with a low molecular packing density in which the hexadecyl chains lie down to fill the gaps between adjacent adsorbates. In contrast, the additional van der Waals interactions provided by the decyl chains of the C(10)C(16)DTPA SAM enable dense molecular packing in the alkyl zone close to the substrate. The structure of the SAM consists of a zone close to the substrate composed of a packed alkyl layer, with hexadecyl chains protruding above to form a loosely packed, disordered alkyl layer. Regardless of the structural differences between the C(6)C(16)DTPA and C(10)C(16)DTPA SAMs, both SAMs exhibit homogeneous mixing of the alkyl chains within the SAM, demonstrating that binding two different chains to a single headgroup is an effective method to prevent phase segregation.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2012 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2012 Tipo del documento: Article