Your browser doesn't support javascript.
loading
Automated annotation of developmental stages of Drosophila embryos in images containing spatial patterns of expression.
Yuan, Lei; Pan, Cheng; Ji, Shuiwang; McCutchan, Michael; Zhou, Zhi-Hua; Newfeld, Stuart J; Kumar, Sudhir; Ye, Jieping.
Afiliación
  • Yuan L; School of Computing, Informatics, and Decision Systems Engineering, Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA, National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA and Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
Bioinformatics ; 30(2): 266-73, 2014 Jan 15.
Article en En | MEDLINE | ID: mdl-24300439
MOTIVATION: Drosophila melanogaster is a major model organism for investigating the function and interconnection of animal genes in the earliest stages of embryogenesis. Today, images capturing Drosophila gene expression patterns are being produced at a higher throughput than ever before. The analysis of spatial patterns of gene expression is most biologically meaningful when images from a similar time point during development are compared. Thus, the critical first step is to determine the developmental stage of an embryo. This information is also needed to observe and analyze expression changes over developmental time. Currently, developmental stages (time) of embryos in images capturing spatial expression pattern are annotated manually, which is time- and labor-intensive. Embryos are often designated into stage ranges, making the information on developmental time course. This makes downstream analyses inefficient and biological interpretations of similarities and differences in spatial expression patterns challenging, particularly when using automated tools for analyzing expression patterns of large number of images. RESULTS: Here, we present a new computational approach to annotate developmental stage for Drosophila embryos in the gene expression images. In an analysis of 3724 images, the new approach shows high accuracy in predicting the developmental stage correctly (79%). In addition, it provides a stage score that enables one to more finely annotate each embryo so that they are divided into early and late periods of development within standard stage demarcations. Stage scores for all images containing expression patterns of the same gene enable a direct way to view expression changes over developmental time for any gene. We show that the genomewide-expression-maps generated using images from embryos in refined stages illuminate global gene activities and changes much better, and more refined stage annotations improve our ability to better interpret results when expression pattern matches are discovered between genes. AVAILABILITY AND IMPLEMENTATION: The software package is availablefor download at: http://www.public.asu.edu/*jye02/Software/Fly-Project/.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Regulación del Desarrollo de la Expresión Génica / Biología Computacional / Perfilación de la Expresión Génica / Proteínas de Drosophila / Drosophila melanogaster / Embrión no Mamífero Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2014 Tipo del documento: Article País de afiliación: Arabia Saudita

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Regulación del Desarrollo de la Expresión Génica / Biología Computacional / Perfilación de la Expresión Génica / Proteínas de Drosophila / Drosophila melanogaster / Embrión no Mamífero Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2014 Tipo del documento: Article País de afiliación: Arabia Saudita