Triamidetriamine bearing macrobicyclic and macrotricyclic ligands: potential applications in the development of copper-64 radiopharmaceuticals.
Inorg Chem
; 53(1): 468-77, 2014 Jan 06.
Article
en En
| MEDLINE
| ID: mdl-24341386
A versatile and straightforward synthetic approach is described for the preparation of triamide bearing analogues of sarcophagine hexaazamacrobicyclic cage ligands without the need for a templating metal ion. Reaction of 1,1,1-tris(aminoethyl)ethane (tame) with 3 equiv of 2-chloroacetyl chloride, yields the tris(α-chloroamide) synthetic intermediate 6, which when treated with either 1,1,1-tris(aminoethyl)ethane or 1,4,7-triazacyclononane furnished two novel triamidetriamine cryptand ligands (7 and 8 respectively). The Co(III) and Cu(II) complexes of cryptand 7 were prepared; however, cryptand 8 could not be metalated. The cryptands and the Co(III) complex 9 have been characterized by elemental analysis, (1)H and (13)C NMR spectroscopy, and X-ray crystallography. These studies confirm that the Co(III) complex 9 adopts an octahedral geometry with three facial deprotonated amido-donors and three facial amine donor groups. The Cu(II) complex 10 was characterized by elemental analysis, single crystal X-ray crystallography, cyclic voltammetry, and UV-visible absorption spectroscopy. In contrast to the Co(III) complex (9), the Cu(II) center adopts a square planar coordination geometry, with two amine and two deprotonated amido donor groups. Compound 10 exhibited a quasi-reversible, one-electron oxidation, which is assigned to the Cu(2+/3+) redox couple. These cryptands represent interesting ligands for radiopharmaceutical applications, and 7 has been labeled with (64)Cu to give (64)Cu-10. This complex showed good stability when subjected to L-cysteine challenge whereas low levels of decomplexation were evident in the presence of L-histidine.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Compuestos Organometálicos
/
Radioisótopos de Cobre
/
Radiofármacos
Idioma:
En
Revista:
Inorg Chem
Año:
2014
Tipo del documento:
Article
País de afiliación:
Australia