Your browser doesn't support javascript.
loading
Vibrational density of states of triphenylene based discotic liquid crystals: dependence on the length of the alkyl chain.
Krause, Christina; Zorn, Reiner; Emmerling, Franziska; Falkenhagen, Jana; Frick, Bernhard; Huber, Patrick; Schönhals, Andreas.
Afiliación
  • Krause C; BAM Federal Institute for Materials Research and Testing, D-12205, Berlin, Germany. Andreas.Schoenhals@bam.de.
Phys Chem Chem Phys ; 16(16): 7324-33, 2014 Apr 28.
Article en En | MEDLINE | ID: mdl-24623092
The vibrational density of states of a series of homologous triphenylene-based discotic liquid crystals HATn (n = 5, 6, 8, 10, 12) depending on the length of the aliphatic side chain is investigated by means of inelastic neutron scattering. All studied materials have a plastic crystalline phase at low temperatures, followed by a hexagonally ordered liquid crystalline phase at higher temperatures and a quasi isotropic phase at the highest temperatures. The X-ray scattering pattern for the plastic crystalline phase of all materials shows a sharp Bragg reflection corresponding to the intercolumnar distance in the lower q-range and a peak at circa 17 nm(-1) related to intracolumnar distances between the cores perpendicular to the columns as well as a broad amorphous halo related to the disordered structure of the methylene groups in the side chains in the higher q-range. The intercolumnar distance increases linearly with increasing chain length for the hexagonal columnar ordered liquid crystalline phase. A similar behaviour is assumed for the plastic crystalline phase. Besides n = 8 all materials under study exhibit a Boson peak. With increasing chain length, the frequency of the Boson peak decreases and its intensity increases. This can be explained by a self-organized confinement model. The peaks for n = 10, 12 are much narrower than for n = 5, 6 which might imply the transformation from a rigid system to a softer one with increasing chain length. Moreover the results can also be discussed in the framework of a transition from an uncorrelated to a correlated disorder with increasing n where n = 8 might be speculatively considered as a transitional state.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2014 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2014 Tipo del documento: Article País de afiliación: Alemania