Your browser doesn't support javascript.
loading
Molecular basis of thermal stability in truncated (2/2) hemoglobins.
Bustamante, Juan P; Bonamore, Alessandra; Nadra, Alejandro D; Sciamanna, Natascia; Boffi, Alberto; Estrin, Darío A; Boechi, Leonardo.
Afiliación
  • Bustamante JP; Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
  • Bonamore A; Instituto Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences, University of Rome "La Sapienza", Italy.
  • Nadra AD; Departamento de Química Biológica, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
  • Sciamanna N; Instituto Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences, University of Rome "La Sapienza", Italy.
  • Boffi A; Instituto Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences, University of Rome "La Sapienza", Italy.
  • Estrin DA; Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Electronic address: dario@qi.fcen.uba.ar.
  • Boechi L; Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Electronic address: lboechi@ic.fcen.uba.ar.
Biochim Biophys Acta ; 1840(7): 2281-8, 2014 Jul.
Article en En | MEDLINE | ID: mdl-24704259
ABSTRACT

BACKGROUND:

Understanding the molecular mechanism through which proteins are functional at extreme high and low temperatures is one of the key issues in structural biology. To investigate this phenomenon, we have focused on two instructive truncated hemoglobins from Thermobifida fusca (Tf-trHbO) and Mycobacterium tuberculosis (Mt-trHbO); although the two proteins are structurally nearly identical, only the former is stable at high temperatures.

METHODS:

We used molecular dynamics simulations at different temperatures as well as thermal melting profile measurements of both wild type proteins and two mutants designed to interchange the amino acid residue, either Pro or Gly, at E3 position.

RESULTS:

The results show that the presence of a Pro at the E3 position is able to increase (by 8°) or decrease (by 4°) the melting temperature of Mt-trHbO and Tf-trHbO, respectively. We observed that the ProE3 alters the structure of the CD loop, making it more flexible.

CONCLUSIONS:

This gain in flexibility allows the protein to concentrate its fluctuations in this single loop and avoid unfolding. The alternate conformations of the CD loop also favor the formation of more salt-bridge interactions, together augmenting the protein's thermostability. GENERAL

SIGNIFICANCE:

These results indicate a clear structural and dynamical role of a key residue for thermal stability in truncated hemoglobins.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Modelos Moleculares / Hemoglobinas Truncadas / Estabilidad Proteica / Mycobacterium tuberculosis Límite: Humans Idioma: En Revista: Biochim Biophys Acta Año: 2014 Tipo del documento: Article País de afiliación: Argentina

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Modelos Moleculares / Hemoglobinas Truncadas / Estabilidad Proteica / Mycobacterium tuberculosis Límite: Humans Idioma: En Revista: Biochim Biophys Acta Año: 2014 Tipo del documento: Article País de afiliación: Argentina