Perfusion decellularization of whole organs.
Nat Protoc
; 9(6): 1451-68, 2014.
Article
en En
| MEDLINE
| ID: mdl-24874812
The native extracellular matrix (ECM) outlines the architecture of organs and tissues. It provides a unique niche of composition and form, which serves as a foundational scaffold that supports organ-specific cell types and enables normal organ function. Here we describe a standard process for pressure-controlled perfusion decellularization of whole organs for generating acellular 3D scaffolds with preserved ECM protein content, architecture and perfusable vascular conduits. By applying antegrade perfusion of detergents and subsequent washes to arterial vasculature at low physiological pressures, successful decellularization of complex organs (i.e., hearts, lungs and kidneys) can be performed. By using appropriate modifications, pressure-controlled perfusion decellularization can be achieved in small-animal experimental models (rat organs, 4-5 d) and scaled to clinically relevant models (porcine and human organs, 12-14 d). Combining the unique structural and biochemical properties of native acellular scaffolds with subsequent recellularization techniques offers a novel platform for organ engineering and regeneration, for experimentation ex vivo and potential clinical application in vivo.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Perfusión
/
Presión
/
Vísceras
/
Proteínas de la Matriz Extracelular
/
Ingeniería de Tejidos
/
Matriz Extracelular
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Nat Protoc
Año:
2014
Tipo del documento:
Article