Your browser doesn't support javascript.
loading
Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function.
Szczesny, Bartosz; Brunyanszki, Attila; Olah, Gabor; Mitra, Sankar; Szabo, Csaba.
Afiliación
  • Szczesny B; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA baszczes@utmb.edu.
  • Brunyanszki A; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
  • Olah G; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
  • Mitra S; Radiation Oncology and Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA.
  • Szabo C; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA baszczes@utmb.edu.
Nucleic Acids Res ; 42(21): 13161-73, 2014 Dec 01.
Article en En | MEDLINE | ID: mdl-25378300
ABSTRACT
The positive role of PARP1 in regulation of various nuclear DNA transactions is well established. Although a mitochondrial localization of PARP1 has been suggested, its role in the maintenance of the mitochondrial DNA is currently unknown. Here we investigated the role of PARP1 in the repair of the mitochondrial DNA in the baseline and oxidative stress conditions. We used wild-type A549 cells or cells depleted of PARP1. Our data show that intra-mitochondrial PARP1 interacts with a key mitochondrial-specific DNA base excision repair (BER) enzymes, namely EXOG and DNA polymerase gamma (Polγ), which under oxidative stress become poly(ADP-ribose)lated (PARylated). Interaction between mitochondrial BER enzymes was significantly affected in the presence of PARP1. Moreover, the repair of the oxidative-induced damage to the mitochondrial DNA in PARP1-depleted cells was found to be more robust compared to control counterpart. In addition, mitochondrial biogenesis was enhanced in PARP1-depleted cells, including mitochondrial DNA copy number and mitochondrial membrane potential. This observation was further confirmed by analysis of lung tissue isolated from WT and PARP1 KO mice. In summary, we conclude that mitochondrial PARP1, in opposite to nuclear PARP1, exerts a negative effect on several mitochondrial-specific transactions including the repair of the mitochondrial DNA.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN Mitocondrial / Poli(ADP-Ribosa) Polimerasas / Reparación del ADN / Mitocondrias Límite: Animals / Humans Idioma: En Revista: Nucleic Acids Res Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN Mitocondrial / Poli(ADP-Ribosa) Polimerasas / Reparación del ADN / Mitocondrias Límite: Animals / Humans Idioma: En Revista: Nucleic Acids Res Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos