Your browser doesn't support javascript.
loading
Personalization of cancer treatment using predictive simulation.
Doudican, Nicole A; Kumar, Ansu; Singh, Neeraj Kumar; Nair, Prashant R; Lala, Deepak A; Basu, Kabya; Talawdekar, Anay A; Sultana, Zeba; Tiwari, Krishna Kumar; Tyagi, Anuj; Abbasi, Taher; Vali, Shireen; Vij, Ravi; Fiala, Mark; King, Justin; Perle, MaryAnn; Mazumder, Amitabha.
Afiliación
  • Doudican NA; New York University School of Medicine, New York, NY, USA. nicole.doudican@gmail.com.
  • Kumar A; Cellworks Research India Pvt. Ltd, Bangalore, India. ansu@cellworksgroup.com.
  • Singh NK; Cellworks Research India Pvt. Ltd, Bangalore, India. neeraj@cellworksgroup.com.
  • Nair PR; Cellworks Research India Pvt. Ltd, Bangalore, India. prashant@cellworksgroup.com.
  • Lala DA; Cellworks Research India Pvt. Ltd, Bangalore, India. deepak@cellworksgroup.com.
  • Basu K; Cellworks Research India Pvt. Ltd, Bangalore, India. Kabya@cellworksgroup.com.
  • Talawdekar AA; Cellworks Research India Pvt. Ltd, Bangalore, India. anay@cellworksgroup.com.
  • Sultana Z; Cellworks Research India Pvt. Ltd, Bangalore, India. zeba@cellworksgroup.com.
  • Tiwari KK; Cellworks Research India Pvt. Ltd, Bangalore, India. krishna@cellworksgroup.com.
  • Tyagi A; Cellworks Research India Pvt. Ltd, Bangalore, India. Anuj@cellworksgroup.com.
  • Abbasi T; Cellworks Group, Inc, San Jose, CA, USA. taher@cellworksgroup.com.
  • Vali S; Cellworks Group, Inc, San Jose, CA, USA. shireen@cellworksgroup.com.
  • Vij R; Washington University School of Medicine, St. Louis, MO, USA. rvij@DOM.wustl.edu.
  • Fiala M; Washington University School of Medicine, St. Louis, MO, USA. MFIALA@DOM.wustl.edu.
  • King J; Washington University School of Medicine, St. Louis, MO, USA. jking@DOM.wustl.edu.
  • Perle M; New York University School of Medicine, New York, NY, USA. maryann.perle@nyumc.org.
  • Mazumder A; New York University Cancer Center, New York, NY, USA. amitabha.mazumder@nyumc.org.
J Transl Med ; 13: 43, 2015 Feb 01.
Article en En | MEDLINE | ID: mdl-25638213
BACKGROUND: The personalization of cancer treatments implies the reconsideration of a one-size-fits-all paradigm. This move has spawned increased use of next generation sequencing to understand mutations and copy number aberrations in cancer cells. Initial personalization successes have been primarily driven by drugs targeting one patient-specific oncogene (e.g., Gleevec, Xalkori, Herceptin). Unfortunately, most cancers include a multitude of aberrations, and the overall impact on cancer signaling and metabolic networks cannot be easily nullified by a single drug. METHODS: We used a novel predictive simulation approach to create an avatar of patient cancer cells using point mutations and copy number aberration data. Simulation avatars of myeloma patients were functionally screened using various molecularly targeted drugs both individually and in combination to identify drugs that are efficacious and synergistic. Repurposing of drugs that are FDA-approved or under clinical study with validated clinical safety and pharmacokinetic data can provide a rapid translational path to the clinic. High-risk multiple myeloma patients were modeled, and the simulation predictions were assessed ex vivo using patient cells. RESULTS: Here, we present an approach to address the key challenge of interpreting patient profiling genomic signatures into actionable clinical insights to make the personalization of cancer therapy a practical reality. Through the rational design of personalized treatments, our approach also targets multiple patient-relevant pathways to address the emergence of single therapy resistance. Our predictive platform identified drug regimens for four high-risk multiple myeloma patients. The predicted regimes were found to be effective in ex vivo analyses using patient cells. CONCLUSIONS: These multiple validations confirm this approach and methodology for the use of big data to create personalized therapeutics using predictive simulation approaches.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Mieloma Múltiple Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Transl Med Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Simulación por Computador / Mieloma Múltiple Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Transl Med Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos