Your browser doesn't support javascript.
loading
Exploiting Differential Gene Expression and Epistasis to Discover Candidate Genes for Drought-Associated QTLs in Arabidopsis thaliana.
Lovell, John T; Mullen, Jack L; Lowry, David B; Awole, Kedija; Richards, James H; Sen, Saunak; Verslues, Paul E; Juenger, Thomas E; McKay, John K.
Afiliación
  • Lovell JT; Department of Integrative Biology, University of Texas, Austin, Texas 78712 Department of BioAgricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523 johntlovell@gmail.com.
  • Mullen JL; Department of BioAgricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523.
  • Lowry DB; Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824.
  • Awole K; Department of BioAgricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523.
  • Richards JH; Department of Land, Air, and Water Resources, University of California, Davis, California 95616.
  • Sen S; Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94143.
  • Verslues PE; Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan.
  • Juenger TE; Department of Integrative Biology, University of Texas, Austin, Texas 78712 Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712.
  • McKay JK; Department of BioAgricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523.
Plant Cell ; 27(4): 969-83, 2015 Apr.
Article en En | MEDLINE | ID: mdl-25873386
Soil water availability represents one of the most important selective agents for plants in nature and the single greatest abiotic determinant of agricultural productivity, yet the genetic bases of drought acclimation responses remain poorly understood. Here, we developed a systems-genetic approach to characterize quantitative trait loci (QTLs), physiological traits and genes that affect responses to soil moisture deficit in the TSUxKAS mapping population of Arabidopsis thaliana. To determine the effects of candidate genes underlying QTLs, we analyzed gene expression as a covariate within the QTL model in an effort to mechanistically link markers, RNA expression, and the phenotype. This strategy produced ranked lists of candidate genes for several drought-associated traits, including water use efficiency, growth, abscisic acid concentration (ABA), and proline concentration. As a proof of concept, we recovered known causal loci for several QTLs. For other traits, including ABA, we identified novel loci not previously associated with drought. Furthermore, we documented natural variation at two key steps in proline metabolism and demonstrated that the mitochondrial genome differentially affects genomic QTLs to influence proline accumulation. These findings demonstrate that linking genome, transcriptome, and phenotype data holds great promise to extend the utility of genetic mapping, even when QTL effects are modest or complex.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arabidopsis / Regulación de la Expresión Génica de las Plantas / Proteínas de Arabidopsis / Sitios de Carácter Cuantitativo / Epistasis Genética / Sequías Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arabidopsis / Regulación de la Expresión Génica de las Plantas / Proteínas de Arabidopsis / Sitios de Carácter Cuantitativo / Epistasis Genética / Sequías Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2015 Tipo del documento: Article