Your browser doesn't support javascript.
loading
FlowClus: efficiently filtering and denoising pyrosequenced amplicons.
Gaspar, John M; Thomas, W Kelley.
Afiliación
  • Gaspar JM; Department of Molecular Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA. jsh58@unh.edu.
  • Thomas WK; Department of Molecular Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA. kelley.thomas@unh.edu.
BMC Bioinformatics ; 16: 105, 2015 Mar 27.
Article en En | MEDLINE | ID: mdl-25885646
ABSTRACT

BACKGROUND:

Reducing the effects of sequencing errors and PCR artifacts has emerged as an essential component in amplicon-based metagenomic studies. Denoising algorithms have been designed that can reduce error rates in mock community data, but they change the sequence data in a manner that can be inconsistent with the process of removing errors in studies of real communities. In addition, they are limited by the size of the dataset and the sequencing technology used.

RESULTS:

FlowClus uses a systematic approach to filter and denoise reads efficiently. When denoising real datasets, FlowClus provides feedback about the process that can be used as the basis to adjust the parameters of the algorithm to suit the particular dataset. When used to analyze a mock community dataset, FlowClus produced a lower error rate compared to other denoising algorithms, while retaining significantly more sequence information. Among its other attributes, FlowClus can analyze longer reads being generated from all stages of 454 sequencing technology, as well as from Ion Torrent. It has processed a large dataset of 2.2 million GS-FLX Titanium reads in twelve hours; using its more efficient (but less precise) trie analysis option, this time was further reduced, to seven minutes.

CONCLUSIONS:

Many of the amplicon-based metagenomics datasets generated over the last several years have been processed through a denoising pipeline that likely caused deleterious effects on the raw data. By using FlowClus, one can avoid such negative outcomes while maintaining control over the filtering and denoising processes. Because of its efficiency, FlowClus can be used to re-analyze multiple large datasets together, thereby leading to more standardized conclusions. FlowClus is freely available on GitHub (jsh58/FlowClus); it is written in C and supported on Linux.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Análisis de Secuencia de ADN Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Análisis de Secuencia de ADN Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos