Your browser doesn't support javascript.
loading
Joint effect of unlinked genotypes: application to type 2 diabetes in the EPIC-Potsdam case-cohort study.
Knüppel, Sven; Meidtner, Karina; Arregui, Maria; Holzhütter, Hermann-Georg; Boeing, Heiner.
Afiliación
  • Knüppel S; Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558, Nuthetal, Germany.
  • Meidtner K; Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558, Nuthetal, Germany.
  • Arregui M; Research Group Cardiovascular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558, Nuthetal, Germany.
  • Holzhütter HG; Institute of Biochemistry, University Medicine Charité Berlin, 10117, Berlin, Germany.
  • Boeing H; Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558, Nuthetal, Germany.
Ann Hum Genet ; 79(4): 253-63, 2015 Jul.
Article en En | MEDLINE | ID: mdl-25907404
Analyzing multiple single nucleotide polymorphisms (SNPs) is a promising approach to finding genetic effects beyond single-locus associations. We proposed the use of multilocus stepwise regression (MSR) to screen for allele combinations as a method to model joint effects, and compared the results with the often used genetic risk score (GRS), conventional stepwise selection, and the shrinkage method LASSO. In contrast to MSR, the GRS, conventional stepwise selection, and LASSO model each genotype by the risk allele doses. We reanalyzed 20 unlinked SNPs related to type 2 diabetes (T2D) in the EPIC-Potsdam case-cohort study (760 cases, 2193 noncases). No SNP-SNP interactions and no nonlinear effects were found. Two SNP combinations selected by MSR (Nagelkerke's R² = 0.050 and 0.048) included eight SNPs with mean allele combination frequency of 2%. GRS and stepwise selection selected nearly the same SNP combinations consisting of 12 and 13 SNPs (Nagelkerke's R² ranged from 0.020 to 0.029). LASSO showed similar results. The MSR method showed the best model fit measured by Nagelkerke's R² suggesting that further improvement may render this method a useful tool in genetic research. However, our comparison suggests that the GRS is a simple way to model genetic effects since it does not consider linkage, SNP-SNP interactions, and no non-linear effects.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Predisposición Genética a la Enfermedad / Polimorfismo de Nucleótido Simple / Diabetes Mellitus Tipo 2 Tipo de estudio: Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Humans / Middle aged País/Región como asunto: Europa Idioma: En Revista: Ann Hum Genet Año: 2015 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Predisposición Genética a la Enfermedad / Polimorfismo de Nucleótido Simple / Diabetes Mellitus Tipo 2 Tipo de estudio: Diagnostic_studies / Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Humans / Middle aged País/Región como asunto: Europa Idioma: En Revista: Ann Hum Genet Año: 2015 Tipo del documento: Article País de afiliación: Alemania