Your browser doesn't support javascript.
loading
UV irradiation-induced production of monoglycosylated biglycan through downregulation of xylosyltransferase 1 in cultured human dermal fibroblasts.
Jin, Cheng Long; Oh, Jang-Hee; Han, Mira; Shin, Min Kyeong; Yao, Cheng; Park, Chi-Hyun; Jin, Zhe Hu; Chung, Jin Ho.
Afiliación
  • Jin CL; Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Dermatology, Yanbian University Hospital, Yanji, Jilin, China; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic
  • Oh JH; Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research
  • Han M; Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research
  • Shin MK; Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research
  • Yao C; Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research
  • Park CH; Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research
  • Jin ZH; Department of Dermatology, Yanbian University Hospital, Yanji, Jilin, China. Electronic address: jinzh_621@163.com.
  • Chung JH; Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research
J Dermatol Sci ; 79(1): 20-9, 2015 Jul.
Article en En | MEDLINE | ID: mdl-25936869
BACKGROUND: Biglycan (BGN) is a proteoglycan composed of a 42-kDa core protein and two glycosaminoglycan (GAG) chains, and known to be involved in structural, space-filling functions and many physiological regulations in the skin. OBJECTIVE: To investigate ultraviolet (UV) irradiation-induced changes of BGN protein and its GAG chain synthesis in cultured human dermal fibroblasts. METHODS: UV irradiation-induced or xylosyltransferase (XYLT) 1 siRNA-mediated smaller-sized protein bands detected by Western blot using BGN antibodies were identified as monoglycosylated forms of BGN, using BGN siRNA-mediated knockdown and chondroitinase ABC (ChABC). Differential activity of XYLT1 and 2 on BGN core protein was investigated by size shift of S42A- and S47A-BGN mutants to core protein size caused by XYLT1 siRNA transfection or UV irradiation. RESULTS: After UV irradiation, intact form of BGN protein (I-BGN) and core protein form were reduced in cultured fibroblasts, but other smaller-sized bands were observed to be increased. These smaller-sized ones were reduced by transfection of BGN siRNA, and shifted to the core protein size by treatment with ChABC, suggesting that they are defectively-glycosylated forms of BGN (D-BGN) protein. UV irradiation also decreased mRNA expression levels of XYLT1 and 2, which are responsible for initiation of GAG chain synthesis. UV-mediated reduction of XYLT1 expression was much stronger than that of XYLT2. Furthermore, siRNA-mediated down-regulation of XYLT1 resulted in the increase of D-BGN and the decrease of I-BGN, while down-regulation of XYLT2 resulted in no change of D-BGN and I-BGN, suggesting that the XYLT1 may react with both GAG-attaching serine sites of BGN; however, XYLT2 may prefer to react one of them. Another dermatan sulfate (DS) proteoglycan, decorin, showed no or a little change of its molecular weight by UV irradiation or XYLT1 siRNA transfection, suggesting that DS synthesis may not be a critical factor in formation of D-BGN. Co-transfection with XYLT1, 2 siRNAs and wild-type or mutant forms of BGN overexpression vectors revealed that S42A-BGN showed size reduction to core protein size by XYLT1 downregulation, but S47A-BGN did not, suggesting that XYLT2 can react only with S42 on BGN core protein. With UV irradiation, both S42A-BGN and S47A-BGN showed size reduction, which is probably because UV-caused downregulation of both XYLTs and overexpression condition resulted in incomplete glycosylation and secretion. CONCLUSIONS: UV irradiation-induced increase of BGN monoglycosylated forms in cultured human dermal fibroblasts is resulted from dominance of XYLT2 activity, which acts only at S42 on BGN core protein, caused by UV-mediated stronger reduction of XYLT1.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pentosiltransferasa / Rayos Ultravioleta / Biglicano / Glicosaminoglicanos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Dermatol Sci Asunto de la revista: DERMATOLOGIA Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pentosiltransferasa / Rayos Ultravioleta / Biglicano / Glicosaminoglicanos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Dermatol Sci Asunto de la revista: DERMATOLOGIA Año: 2015 Tipo del documento: Article