Your browser doesn't support javascript.
loading
Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates.
Bhat, Hema Balakrishna; Ishitsuka, Reiko; Inaba, Takehiko; Murate, Motohide; Abe, Mitsuhiro; Makino, Asami; Kohyama-Koganeya, Ayako; Nagao, Kohjiro; Kurahashi, Atsushi; Kishimoto, Takuma; Tahara, Michiru; Yamano, Akinori; Nagamune, Kisaburo; Hirabayashi, Yoshio; Juni, Naoto; Umeda, Masato; Fujimori, Fumihiro; Nishibori, Kozo; Yamaji-Hasegawa, Akiko; Greimel, Peter; Kobayashi, Toshihide.
Afiliación
  • Bhat HB; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Ishitsuka R; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Inaba T; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Murate M; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Abe M; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Makino A; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Kohyama-Koganeya A; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Nagao K; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Kurahashi A; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Kishimoto T; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Tahara M; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Yamano A; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Nagamune K; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Hirabayashi Y; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Juni N; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Umeda M; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Fujimori F; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Nishibori K; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Yamaji-Hasegawa A; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Greimel P; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
  • Kobayashi T; *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan;
FASEB J ; 29(9): 3920-34, 2015 Sep.
Article en En | MEDLINE | ID: mdl-26060215
Ceramide phosphoethanolamine (CPE), a sphingomyelin analog, is a major sphingolipid in invertebrates and parasites, whereas only trace amounts are present in mammalian cells. In this study, mushroom-derived proteins of the aegerolysin family­pleurotolysin A2 (PlyA2; K(D) = 12 nM), ostreolysin (Oly; K(D) = 1.3 nM), and erylysin A (EryA; K(D) = 1.3 nM)­strongly associated with CPE/cholesterol (Chol)-containing membranes, whereas their low affinity to sphingomyelin/Chol precluded establishment of the binding kinetics. Binding specificity was determined by multilamellar liposome binding assays, supported bilayer assays, and solid-phase studies against a series of neutral and negatively charged lipid classes mixed 1:1 with Chol or phosphatidylcholine. No cross-reactivity was detected with phosphatidylethanolamine. Only PlyA2 also associated with CPE, independent of Chol content (K(D) = 41 µM), rendering it a suitable tool for visualizing CPE in lipid-blotting experiments and biologic samples from sterol auxotrophic organisms. Visualization of CPE enrichment in the CNS of Drosophila larvae (by PlyA2) and in the bloodstream form of the parasite Trypanosoma brucei (by EryA) by fluorescence imaging demonstrated the versatility of aegerolysin family proteins as efficient tools for detecting and visualizing CPE.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Esfingomielinas / Proteínas Fúngicas / Proteínas Hemolisinas Límite: Animals Idioma: En Revista: FASEB J Asunto de la revista: BIOLOGIA / FISIOLOGIA Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Esfingomielinas / Proteínas Fúngicas / Proteínas Hemolisinas Límite: Animals Idioma: En Revista: FASEB J Asunto de la revista: BIOLOGIA / FISIOLOGIA Año: 2015 Tipo del documento: Article