Your browser doesn't support javascript.
loading
Intestinal scavenger receptor class B type I as a novel regulator of chylomicron production in healthy and diet-induced obese states.
Lino, Marsel; Farr, Sarah; Baker, Chris; Fuller, Mark; Trigatti, Bernardo; Adeli, Khosrow.
Afiliación
  • Lino M; Department of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; and.
  • Farr S; Department of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; and.
  • Baker C; Department of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada;
  • Fuller M; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
  • Trigatti B; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
  • Adeli K; Department of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; and khosrow.adeli@sickkids.ca.
Am J Physiol Gastrointest Liver Physiol ; 309(5): G350-9, 2015 Sep 01.
Article en En | MEDLINE | ID: mdl-26138463
ABSTRACT
The small intestine contributes to diabetic dyslipidemia through the overproduction of apolipoprotein B48 (apoB48)-containing chylomicron particles. An important regulator of chylomicron generation is dietary lipid absorption, underlining the potential involvement of intestinal lipid transporters for developing dyslipidemia. Intestinal expression of scavenger receptor class B type I (SR-BI) has been found to be upregulated in animal models of insulin resistance. Here we characterized the potential importance of SR-BI in contributing to chylomicron production and postprandial hypertriglyceridemia in vivo. Postprandial triglyceride (TG)-rich lipoprotein (TRL) production was characterized in hamsters treated with the SR-BI inhibitor to block lipid transport-1 (BLT-1) under healthy conditions or conditions of diet-induced obesity and dyslipidemia. BLT-1 (1 mg/kg) or vehicle was administered acutely in chow-fed hamsters or gavaged twice daily over 10 days during high-fructose, high-fat, high-cholesterol (FFC) feeding. Effects of acute SR-BI inhibition by BLT-1 were confirmed in healthy fat-loaded rats. Finally, plasma lipid levels were compared between SR-BI(-/-) mice and their wild-type counterparts fed either chow or a 12-wk high-fat diet. Acute BLT-1 treatment reduced postprandial plasma and TRL TG levels in healthy hamsters and rats. Chronic BLT-1 treatment of FFC-fed hamsters blunted diet-induced weight gain and fasting hypertriglyceridemia, and lowered postprandial TRL-TG, -cholesterol, and -apoB48 levels. Finally, SR-BI(-/-) mice displayed lower plasma and TRL TG levels relative to wild type, and diet-induced weight gain and postprandial hypertriglyceridemia were hindered in SR-BI(-/-) mice. We conclude that intestinal SR-BI is a critical regulator of postprandial lipoprotein production, emphasizing its potential as a target for preventing diabetic dyslipidemia.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Quilomicrones / Receptores Depuradores de Clase B / Intestino Delgado / Obesidad Tipo de estudio: Etiology_studies Límite: Animals Idioma: En Revista: Am J Physiol Gastrointest Liver Physiol Asunto de la revista: FISIOLOGIA / GASTROENTEROLOGIA Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Quilomicrones / Receptores Depuradores de Clase B / Intestino Delgado / Obesidad Tipo de estudio: Etiology_studies Límite: Animals Idioma: En Revista: Am J Physiol Gastrointest Liver Physiol Asunto de la revista: FISIOLOGIA / GASTROENTEROLOGIA Año: 2015 Tipo del documento: Article