Your browser doesn't support javascript.
loading
High Temperature Magnetic Stabilization of Cobalt Nanoparticles by an Antiferromagnetic Proximity Effect.
De Toro, José A; Marques, Daniel P; Muñiz, Pablo; Skumryev, Vassil; Sort, Jordi; Givord, Dominique; Nogués, Josep.
Afiliación
  • De Toro JA; Instituto Regional de Investigación Científica Aplicada (IRICA) and Departamento de Física Aplicada, Universidad de Castilla-La Mancha, E-13071 Ciudad Real, Spain.
  • Marques DP; Instituto Regional de Investigación Científica Aplicada (IRICA) and Departamento de Física Aplicada, Universidad de Castilla-La Mancha, E-13071 Ciudad Real, Spain.
  • Muñiz P; Instituto Regional de Investigación Científica Aplicada (IRICA) and Departamento de Física Aplicada, Universidad de Castilla-La Mancha, E-13071 Ciudad Real, Spain.
  • Skumryev V; Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
  • Sort J; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
  • Givord D; Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain.
  • Nogués J; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
Phys Rev Lett ; 115(5): 057201, 2015 Jul 31.
Article en En | MEDLINE | ID: mdl-26274435
ABSTRACT
Thermal activation tends to destroy the magnetic stability of small magnetic nanoparticles, with crucial implications for ultrahigh density recording among other applications. Here we demonstrate that low-blocking-temperature ferromagnetic (FM) Co nanoparticles (T(B)<70 K) become magnetically stable above 400 K when embedded in a high-Néel-temperature antiferromagnetic (AFM) NiO matrix. The origin of this remarkable T(B) enhancement is due to a magnetic proximity effect between a thin CoO shell (with low Néel temperature, T(N), and high anisotropy, K(AFM)) surrounding the Co nanoparticles and the NiO matrix (with high T(N) but low K(AFM)). This proximity effect yields an effective antiferromagnet with an apparent T(N) beyond that of bulk CoO, and an enhanced anisotropy compared to NiO. In turn, the Co core FM moment is stabilized against thermal fluctuations via core-shell exchange-bias coupling, leading to the observed T(B) increase. Mean-field calculations provide a semiquantitative understanding of this magnetic-proximity stabilization mechanism.
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2015 Tipo del documento: Article País de afiliación: España
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2015 Tipo del documento: Article País de afiliación: España