Your browser doesn't support javascript.
loading
Repression of Esophageal Neoplasia and Inflammatory Signaling by Anti-miR-31 Delivery In Vivo.
Taccioli, Cristian; Garofalo, Michela; Chen, Hongping; Jiang, Yubao; Tagliazucchi, Guidantonio Malagoli; Di Leva, Gianpiero; Alder, Hansjuerg; Fadda, Paolo; Middleton, Justin; Smalley, Karl J; Selmi, Tommaso; Naidu, Srivatsava; Farber, John L; Croce, Carlo M; Fong, Louise Y.
Afiliación
  • Taccioli C; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Garofalo M; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Chen H; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Jiang Y; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Tagliazucchi GM; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Di Leva G; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Alder H; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Fadda P; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Middleton J; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Smalley KJ; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Selmi T; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Naidu S; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Farber JL; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Croce CM; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
  • Fong LY; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH (CT, MG, GDL, HA, PF, JM, CMC); Kimmel Cancer Center (HC, YJ, KJS, LYF) and Department of Pathology, Anatomy, and Cell Biology (YJ, JLF, LYF), Thomas Jefferson Uni
J Natl Cancer Inst ; 107(11)2015 Nov.
Article en En | MEDLINE | ID: mdl-26286729
BACKGROUND: Overexpression of microRNA-31 (miR-31) is implicated in the pathogenesis of esophageal squamous cell carcinoma (ESCC), a deadly disease associated with dietary zinc deficiency. Using a rat model that recapitulates features of human ESCC, the mechanism whereby Zn regulates miR-31 expression to promote ESCC is examined. METHODS: To inhibit in vivo esophageal miR-31 overexpression in Zn-deficient rats (n = 12-20 per group), locked nucleic acid-modified anti-miR-31 oligonucleotides were administered over five weeks. miR-31 expression was determined by northern blotting, quantitative polymerase chain reaction, and in situ hybridization. Physiological miR-31 targets were identified by microarray analysis and verified by luciferase reporter assay. Cellular proliferation, apoptosis, and expression of inflammation genes were determined by immunoblotting, caspase assays, and immunohistochemistry. The miR-31 promoter in Zn-deficient esophagus was identified by ChIP-seq using an antibody for histone mark H3K4me3. Data were analyzed with t test and analysis of variance. All statistical tests were two-sided. RESULTS: In vivo, anti-miR-31 reduced miR-31 overexpression (P = .002) and suppressed the esophageal preneoplasia in Zn-deficient rats. At the same time, the miR-31 target Stk40 was derepressed, thereby inhibiting the STK40-NF-κΒ-controlled inflammatory pathway, with resultant decreased cellular proliferation and activated apoptosis (caspase 3/7 activities, fold change = 10.7, P = .005). This same connection between miR-31 overexpression and STK40/NF-κΒ expression was also documented in human ESCC cell lines. In Zn-deficient esophagus, the miR-31 promoter region and NF-κΒ binding site were activated. Zn replenishment restored the regulation of this genomic region and a normal esophageal phenotype. CONCLUSIONS: The data define the in vivo signaling pathway underlying interaction of Zn deficiency and miR-31 overexpression in esophageal neoplasia and provide a mechanistic rationale for miR-31 as a therapeutic target for ESCC.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oligonucleótidos / Neoplasias Esofágicas / Carcinoma de Células Escamosas / Transducción de Señal / MicroARNs Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Natl Cancer Inst Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oligonucleótidos / Neoplasias Esofágicas / Carcinoma de Células Escamosas / Transducción de Señal / MicroARNs Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Natl Cancer Inst Año: 2015 Tipo del documento: Article