Your browser doesn't support javascript.
loading
miR-206 Mediates YAP-Induced Cardiac Hypertrophy and Survival.
Yang, Yanfei; Del Re, Dominic P; Nakano, Noritsugu; Sciarretta, Sebastiano; Zhai, Peiyong; Park, Jiyeon; Sayed, Danish; Shirakabe, Akihiro; Matsushima, Shoji; Park, Yongkyu; Tian, Bin; Abdellatif, Maha; Sadoshima, Junichi.
Afiliación
  • Yang Y; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Del Re DP; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Nakano N; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Sciarretta S; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Zhai P; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Park J; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Sayed D; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Shirakabe A; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Matsushima S; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Park Y; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Tian B; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Abdellatif M; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
  • Sadoshima J; From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine (Y.Y., D.P.D.R., N.N., P.Z., D.S., A.S., S.M., Y.P., M.A., J.S.), and Department of Biochemistry (J.P., B.T.), Rutgers, New Jersey Medical School, Newark; and the Department of Medical-Surgical Scien
Circ Res ; 117(10): 891-904, 2015 Oct 23.
Article en En | MEDLINE | ID: mdl-26333362
ABSTRACT
RATIONALE In Drosophila, the Hippo signaling pathway negatively regulates organ size by suppressing cell proliferation and survival through the inhibition of Yorkie, a transcriptional cofactor. Yes-associated protein (YAP), the mammalian homolog of Yorkie, promotes cardiomyocyte growth and survival in postnatal hearts. However, the underlying mechanism responsible for the beneficial effect of YAP in cardiomyocytes remains unclear.

OBJECTIVES:

We investigated whether miR-206, a microRNA known to promote hypertrophy in skeletal muscle, mediates the effect of YAP on promotion of survival and hypertrophy in cardiomyocytes. METHODS AND

RESULTS:

Microarray analysis indicated that YAP increased miR-206 expression in cardiomyocytes. Increased miR-206 expression induced cardiac hypertrophy and inhibited cell death in cultured cardiomyocytes, similar to that of YAP. Downregulation of endogenous miR-206 in cardiomyocytes attenuated YAP-induced cardiac hypertrophy and survival, suggesting that miR-206 plays a critical role in mediating YAP function. Cardiac-specific overexpression of miR-206 in mice induced hypertrophy and protected the heart from ischemia/reperfusion injury, whereas suppression of miR-206 exacerbated ischemia/reperfusion injury and prevented pressure overload-induced cardiac hypertrophy. miR-206 negatively regulates Forkhead box protein P1 expression in cardiomyocytes and overexpression of Forkhead box protein P1 attenuated miR-206-induced cardiac hypertrophy and survival, suggesting that Forkhead box protein P1 is a functional target of miR-206.

CONCLUSIONS:

YAP increases the abundance of miR-206, which in turn plays an essential role in mediating hypertrophy and survival by silencing Forkhead box protein P1 in cardiomyocytes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fosfoproteínas / Daño por Reperfusión Miocárdica / Cardiomegalia / Miocitos Cardíacos / MicroARNs / Proteínas Adaptadoras Transductoras de Señales / Proteínas Reguladoras de la Apoptosis / Infarto del Miocardio Tipo de estudio: Prognostic_studies Idioma: En Revista: Circ Res Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fosfoproteínas / Daño por Reperfusión Miocárdica / Cardiomegalia / Miocitos Cardíacos / MicroARNs / Proteínas Adaptadoras Transductoras de Señales / Proteínas Reguladoras de la Apoptosis / Infarto del Miocardio Tipo de estudio: Prognostic_studies Idioma: En Revista: Circ Res Año: 2015 Tipo del documento: Article