Your browser doesn't support javascript.
loading
Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.
Ganguly, Mohit; Miller, Stephanie; Mitra, Kunal.
Afiliación
  • Ganguly M; Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, Florida, 32901.
  • Miller S; Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, Florida, 32901.
  • Mitra K; Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, Florida, 32901.
Lasers Surg Med ; 47(9): 711-22, 2015 Nov.
Article en En | MEDLINE | ID: mdl-26349633
BACKGROUND AND OBJECTIVES: Short pulse lasers with pulse durations in the range of nanoseconds and shorter are effective in the targeted delivery of heat energy for precise tissue heating and ablation. This photothermal therapy is useful where the removal of cancerous tissue sections is required. The objective of this paper is to use finite element modeling to demonstrate the differences in the thermal response of skin tissue to short-pulse and continuous wave laser irradiation in the initial stages of the irradiation. Models have been developed to validate the temperature distribution and heat affected zone during laser irradiation of excised rat skin samples and live anesthetized mouse tissue. STUDY DESIGN/MATERIALS AND METHODS: Excised rat skin samples and live anesthetized mice were subjected to Nd:YAG pulsed laser (1,064 nm, 500 ns) irradiation of varying powers. A thermal camera was used to measure the rise in surface temperature as a result of the laser irradiation. Histological analyses of the heat affected zone created in the tissue samples due to the temperature rise were performed. The thermal interaction of the laser with the tissue was quantified by measuring the thermal dose delivered by the laser. Finite element geometries of three-dimensional tissue sections for continuum and vascular models were developed using COMSOL Multiphysics. Blood flow was incorporated into the vascular model to mimic the presence of discrete blood vessels and contrasted with the continuum model without blood perfusion. RESULTS: The temperature rises predicted by the continuum and the vascular models agreed with the temperature rises observed at the surface of the excised rat tissue samples and live anesthetized mice due to laser irradiation respectively. The vascular model developed was able to predict the cooling produced by the blood vessels in the region where the vessels were present. The temperature rise in the continuum model due to pulsed laser irradiation was higher than that due to continuous wave (CW) laser irradiation in the initial stages of the irradiation. The temperature rise due to pulsed and CW laser irradiation converged as the time of irradiation increased. A similar trend was observed when comparing the thermal dose for pulsed and CW laser irradiation in the vascular model. CONCLUSION: Finite element models (continuum and vascular) were developed that can be used to predict temperature rise and quantify the thermal dose resulting from laser irradiation of excised rat skin samples and live anesthetized mouse tissue. The vascular model incorporating blood perfusion effects predicted temperature rise better in the live animal tissue. The models developed demonstrated that pulsed lasers caused greater temperature rise and delivered a greater thermal dose than CW lasers of equal average power, especially during the initial transients of irradiation. This analysis will be beneficial for thermal therapy applications where maximum delivery of thermal dose over a short period of time is important.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Piel / Terapia por Láser / Láseres de Estado Sólido Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Lasers Surg Med Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Piel / Terapia por Láser / Láseres de Estado Sólido Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Lasers Surg Med Año: 2015 Tipo del documento: Article