Your browser doesn't support javascript.
loading
Pauli Spin Blockade of Heavy Holes in a Silicon Double Quantum Dot.
Li, Ruoyu; Hudson, Fay E; Dzurak, Andrew S; Hamilton, Alexander R.
Afiliación
  • Li R; School of Physics, ‡Australian National Fabrication Facility, and §Centre of Excellence for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales , Sydney, New South Wales 2052, Australia.
  • Hudson FE; School of Physics, ‡Australian National Fabrication Facility, and §Centre of Excellence for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales , Sydney, New South Wales 2052, Australia.
  • Dzurak AS; School of Physics, ‡Australian National Fabrication Facility, and §Centre of Excellence for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales , Sydney, New South Wales 2052, Australia.
  • Hamilton AR; School of Physics, ‡Australian National Fabrication Facility, and §Centre of Excellence for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales , Sydney, New South Wales 2052, Australia.
Nano Lett ; 15(11): 7314-8, 2015 Nov 11.
Article en En | MEDLINE | ID: mdl-26434407
In this work, we study hole transport in a planar silicon metal-oxide-semiconductor based double quantum dot. We demonstrate Pauli spin blockade in the few hole regime and map the spin relaxation induced leakage current as a function of interdot level spacing and magnetic field. With varied interdot tunnel coupling, we can identify different dominant spin relaxation mechanisms. Application of a strong out-of-plane magnetic field causes an avoided singlet-triplet level crossing, from which the heavy hole g-factor ~0.93 and the strength of spin-orbit interaction ~110 µeV can be obtained. The demonstrated strong spin-orbit interaction of heavy holes promises fast local spin manipulation using only electric fields, which is of great interest for quantum information processing.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nano Lett Año: 2015 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nano Lett Año: 2015 Tipo del documento: Article País de afiliación: Australia