Your browser doesn't support javascript.
loading
Traction Forces of Endothelial Cells under Slow Shear Flow.
Perrault, Cecile M; Brugues, Agusti; Bazellieres, Elsa; Ricco, Pierre; Lacroix, Damien; Trepat, Xavier.
Afiliación
  • Perrault CM; Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom; Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom; Institute for Bioengineering of Catalonia, Barcelona, Spain. Electronic address: c.perrault@sheffield.ac.uk.
  • Brugues A; Institute for Bioengineering of Catalonia, Barcelona, Spain.
  • Bazellieres E; Institute for Bioengineering of Catalonia, Barcelona, Spain.
  • Ricco P; Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom.
  • Lacroix D; Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom; Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom; Institute for Bioengineering of Catalonia, Barcelona, Spain.
  • Trepat X; Institute for Bioengineering of Catalonia, Barcelona, Spain; Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spai
Biophys J ; 109(8): 1533-6, 2015 Oct 20.
Article en En | MEDLINE | ID: mdl-26488643
ABSTRACT
Endothelial cells are constantly exposed to fluid shear stresses that regulate vascular morphogenesis, homeostasis, and disease. The mechanical responses of endothelial cells to relatively high shear flow such as that characteristic of arterial circulation has been extensively studied. Much less is known about the responses of endothelial cells to slow shear flow such as that characteristic of venous circulation, early angiogenesis, atherosclerosis, intracranial aneurysm, or interstitial flow. Here we used a novel, to our knowledge, microfluidic technique to measure traction forces exerted by confluent vascular endothelial cell monolayers under slow shear flow. We found that cells respond to flow with rapid and pronounced increases in traction forces and cell-cell stresses. These responses are reversible in time and do not involve reorientation of the cell body. Traction maps reveal that local cell responses to slow shear flow are highly heterogeneous in magnitude and sign. Our findings unveil a low-flow regime in which endothelial cell mechanics is acutely responsive to shear stress.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estrés Fisiológico / Circulación Sanguínea / Células Endoteliales Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biophys J Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estrés Fisiológico / Circulación Sanguínea / Células Endoteliales Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biophys J Año: 2015 Tipo del documento: Article