A Markov chain model for N-linked protein glycosylation--towards a low-parameter tool for model-driven glycoengineering.
Metab Eng
; 33: 52-66, 2016 Jan.
Article
en En
| MEDLINE
| ID: mdl-26537759
Glycosylation is a critical quality attribute of most recombinant biotherapeutics. Consequently, drug development requires careful control of glycoforms to meet bioactivity and biosafety requirements. However, glycoengineering can be extraordinarily difficult given the complex reaction networks underlying glycosylation and the vast number of different glycans that can be synthesized in a host cell. Computational modeling offers an intriguing option to rationally guide glycoengineering, but the high parametric demands of current modeling approaches pose challenges to their application. Here we present a novel low-parameter approach to describe glycosylation using flux-balance and Markov chain modeling. The model recapitulates the biological complexity of glycosylation, but does not require user-provided kinetic information. We use this method to predict and experimentally validate glycoprofiles on EPO, IgG as well as the endogenous secretome following glycosyltransferase knock-out in different Chinese hamster ovary (CHO) cell lines. Our approach offers a flexible and user-friendly platform that can serve as a basis for powerful computational engineering efforts in mammalian cell factories for biopharmaceutical production.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Polisacáridos
/
Glicoproteínas
/
Cadenas de Markov
/
Modelos Estadísticos
/
Ingeniería Metabólica
/
Análisis de Flujos Metabólicos
Tipo de estudio:
Health_economic_evaluation
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Animals
Idioma:
En
Revista:
Metab Eng
Asunto de la revista:
ENGENHARIA BIOMEDICA
/
METABOLISMO
Año:
2016
Tipo del documento:
Article
País de afiliación:
Estados Unidos