Your browser doesn't support javascript.
loading
Processing, visualising and reconstructing network models from single-cell data.
Woodhouse, Steven; Moignard, Victoria; Göttgens, Berthold; Fisher, Jasmin.
Afiliación
  • Woodhouse S; Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
  • Moignard V; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Göttgens B; Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
  • Fisher J; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
Immunol Cell Biol ; 94(3): 256-65, 2016 Mar.
Article en En | MEDLINE | ID: mdl-26577213
New single-cell technologies readily permit gene expression profiling of thousands of cells at single-cell resolution. In this review, we will discuss methods for visualisation and interpretation of single-cell gene expression data, and the computational analysis needed to go from raw data to predictive executable models of gene regulatory network function. We will focus primarily on single-cell real-time quantitative PCR and RNA-sequencing data, but much of what we cover will also be relevant to other platforms, such as the mass cytometry technology for high-dimensional single-cell proteomics.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biología Computacional / Perfilación de la Expresión Génica / Redes Reguladoras de Genes / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Immunol Cell Biol Asunto de la revista: ALERGIA E IMUNOLOGIA Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biología Computacional / Perfilación de la Expresión Génica / Redes Reguladoras de Genes / Análisis de la Célula Individual Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Immunol Cell Biol Asunto de la revista: ALERGIA E IMUNOLOGIA Año: 2016 Tipo del documento: Article