Your browser doesn't support javascript.
loading
A Combined Approach Employing Chlorotoxin-Nanovectors and Low Dose Radiation To Reach Infiltrating Tumor Niches in Glioblastoma.
Tamborini, Matteo; Locatelli, Erica; Rasile, Marco; Monaco, Ilaria; Rodighiero, Simona; Corradini, Irene; Franchini, Mauro Comes; Passoni, Lorena; Matteoli, Michela.
Afiliación
  • Tamborini M; Department of Medical Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy.
  • Locatelli E; CNR Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy.
  • Rasile M; Department of Industrial Chemistry "Toso Montanari", University of Bologna , Viale Risorgimento 4, 40136 Bologna, Italy.
  • Monaco I; Department of Medical Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy.
  • Rodighiero S; Laboratory of Pharmacology and Brain Pathology, Humanitas Research Hospital , Via Manzoni 56, Rozzano, 20089 Milano, Italy.
  • Corradini I; Department of Industrial Chemistry "Toso Montanari", University of Bologna , Viale Risorgimento 4, 40136 Bologna, Italy.
  • Franchini MC; Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy.
  • Passoni L; Department of Medical Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy.
  • Matteoli M; CNR Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy.
ACS Nano ; 10(2): 2509-20, 2016 Feb 23.
Article en En | MEDLINE | ID: mdl-26745323
ABSTRACT
Glioblastoma multiforme (GBM) is the most aggressive form of glioma, with life expectancy of around 2 years after diagnosis, due to recidivism and to the blood-brain barrier (BBB) limiting the amount of drugs which reach the residual malignant cells, thus contributing to the failure of chemotherapies. To bypass the obstacles imposed by the BBB, we investigated the use of nanotechnologies combined with radiotherapy, as a potential therapeutic strategy for GBM. We used poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PNP) conjugated to chlorotoxin (CTX), a peptide reported to bind selectively to glioma cells. Silver nanoparticles were entrapped inside the functionalized nanoparticles (Ag-PNP-CTX), to allow detection and quantification of the cellular uptake by confocal microscopy, both in vitro and in vivo. In vitro experiments performed with different human glioblastoma cell lines showed higher cytoplasmic uptake of Ag-PNP-CTX, with respect to nonfunctionalized nanoparticles. In vivo experiments showed that Ag-NP-CTX efficiently targets the tumor, but are scarcely effective in crossing the blood brain barrier in the healthy brain, where dispersed metastatic cells are present. We show here that single whole brain X-ray irradiation, performed 20 h before nanoparticle injection, enhances the expression of the CTX targets, MMP-2 and ClC-3, and, through BBB permeabilization, potently increases the amount of internalized Ag-PNP-CTX even in dispersed cells, and generated an efficient antitumor synergistic effect able to inhibit in vivo tumor growth. Notably, the application of Ag-PNP-CTX to irradiated tumor cells decreases the extracellular activity of MMP-2. By targeting dispersed GBM cells and reducing MMP-2 activity, the combined use of CTX-nanovectors with radiotherapy may represent a promising therapeutic approach toward GBM.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Venenos de Escorpión / Neoplasias Encefálicas / Glioblastoma / Nanopartículas del Metal / Quimioradioterapia Límite: Animals / Humans Idioma: En Revista: ACS Nano Año: 2016 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Venenos de Escorpión / Neoplasias Encefálicas / Glioblastoma / Nanopartículas del Metal / Quimioradioterapia Límite: Animals / Humans Idioma: En Revista: ACS Nano Año: 2016 Tipo del documento: Article País de afiliación: Italia