Your browser doesn't support javascript.
loading
A role for the bacterial GATC methylome in antibiotic stress survival.
Cohen, Nadia R; Ross, Christian A; Jain, Saloni; Shapiro, Rebecca S; Gutierrez, Arnaud; Belenky, Peter; Li, Hu; Collins, James J.
Afiliación
  • Cohen NR; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.
  • Ross CA; Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  • Jain S; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
  • Shapiro RS; Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Information Technology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
  • Gutierrez A; Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  • Belenky P; Boston University, Boston, Massachusetts, USA.
  • Li H; Institute for Medical Engineering and Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  • Collins JJ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
Nat Genet ; 48(5): 581-6, 2016 05.
Article en En | MEDLINE | ID: mdl-26998690
Antibiotic resistance is an increasingly serious public health threat. Understanding pathways allowing bacteria to survive antibiotic stress may unveil new therapeutic targets. We explore the role of the bacterial epigenome in antibiotic stress survival using classical genetic tools and single-molecule real-time sequencing to characterize genomic methylation kinetics. We find that Escherichia coli survival under antibiotic pressure is severely compromised without adenine methylation at GATC sites. Although the adenine methylome remains stable during drug stress, without GATC methylation, methyl-dependent mismatch repair (MMR) is deleterious and, fueled by the drug-induced error-prone polymerase Pol IV, overwhelms cells with toxic DNA breaks. In multiple E. coli strains, including pathogenic and drug-resistant clinical isolates, DNA adenine methyltransferase deficiency potentiates antibiotics from the ß-lactam and quinolone classes. This work indicates that the GATC methylome provides structural support for bacterial survival during antibiotic stress and suggests targeting bacterial DNA methylation as a viable approach to enhancing antibiotic activity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN Bacteriano / Metilación de ADN / Farmacorresistencia Bacteriana Idioma: En Revista: Nat Genet Asunto de la revista: GENETICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN Bacteriano / Metilación de ADN / Farmacorresistencia Bacteriana Idioma: En Revista: Nat Genet Asunto de la revista: GENETICA MEDICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos