Your browser doesn't support javascript.
loading
Dominant-negative Gα subunits are a mechanism of dysregulated heterotrimeric G protein signaling in human disease.
Marivin, Arthur; Leyme, Anthony; Parag-Sharma, Kshitij; DiGiacomo, Vincent; Cheung, Anthony Y; Nguyen, Lien T; Dominguez, Isabel; Garcia-Marcos, Mikel.
Afiliación
  • Marivin A; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
  • Leyme A; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
  • Parag-Sharma K; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
  • DiGiacomo V; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
  • Cheung AY; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
  • Nguyen LT; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
  • Dominguez I; Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
  • Garcia-Marcos M; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA. mgm1@bu.edu.
Sci Signal ; 9(423): ra37, 2016 Apr 12.
Article en En | MEDLINE | ID: mdl-27072656
ABSTRACT
Auriculo-condylar syndrome (ACS), a rare condition that impairs craniofacial development, is caused by mutations in a G protein-coupled receptor (GPCR) signaling pathway. In mice, disruption of signaling by the endothelin type A receptor (ET(A)R), which is mediated by the G protein (heterotrimeric guanine nucleotide-binding protein) subunit Gα(q/11) and subsequently phospholipase C (PLC), impairs neural crest cell differentiation that is required for normal craniofacial development. Some ACS patients have mutations inGNAI3, which encodes Gα(i3), but it is unknown whether this G protein has a role within the ET(A)R pathway. We used a Xenopus model of vertebrate development, in vitro biochemistry, and biosensors of G protein activity in mammalian cells to systematically characterize the phenotype and function of all known ACS-associated Gα(i3) mutants. We found that ACS-associated mutations in GNAI3 produce dominant-negative Gα(i3) mutant proteins that couple to ET(A)R but cannot bind and hydrolyze guanosine triphosphate, resulting in the prevention of endothelin-mediated activation of Gα(q/11) and PLC. Thus, ACS is caused by functionally dominant-negative mutations in a heterotrimeric G protein subunit.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Subunidades alfa de la Proteína de Unión al GTP Gi-Go / Oído / Enfermedades del Oído / Mutación Límite: Animals / Humans Idioma: En Revista: Sci Signal Asunto de la revista: CIENCIA / FISIOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Subunidades alfa de la Proteína de Unión al GTP Gi-Go / Oído / Enfermedades del Oído / Mutación Límite: Animals / Humans Idioma: En Revista: Sci Signal Asunto de la revista: CIENCIA / FISIOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos