Your browser doesn't support javascript.
loading
The LysR-type transcriptional regulator, CidR, regulates stationary phase cell death in Staphylococcus aureus.
Chaudhari, Sujata S; Thomas, Vinai C; Sadykov, Marat R; Bose, Jeffrey L; Ahn, Daniel J; Zimmerman, Matthew C; Bayles, Kenneth W.
Afiliación
  • Chaudhari SS; Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA.
  • Thomas VC; Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA.
  • Sadykov MR; Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA.
  • Bose JL; Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, MSN 3029, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
  • Ahn DJ; Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA.
  • Zimmerman MC; Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
  • Bayles KW; Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5900, USA. kbayles@unmc.edu.
Mol Microbiol ; 101(6): 942-53, 2016 09.
Article en En | MEDLINE | ID: mdl-27253847
ABSTRACT
The Staphylococcus aureus LysR-type transcriptional regulator, CidR, activates the expression of two operons including cidABC and alsSD that display pro- and anti-death functions, respectively. Although several investigations have focused on the functions of different genes associated with these operons, the collective role of the CidR regulon in staphylococcal physiology is not clearly understood. Here we reveal that the primary role of this regulon is to limit acetate-dependent potentiation of cell death in staphylococcal populations. Although both CidB and CidC promote acetate generation and cell death, the CidR-dependent co-activation of CidA and AlsSD counters the effects of CidBC by redirecting intracellular carbon flux towards acetoin formation. From a mechanistic standpoint, we demonstrate that CidB is necessary for full activation of CidC, whereas CidA limits the abundance of CidC in the cell.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Staphylococcus aureus / Proteínas Bacterianas / Factores de Transcripción Idioma: En Revista: Mol Microbiol Asunto de la revista: BIOLOGIA MOLECULAR / MICROBIOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Staphylococcus aureus / Proteínas Bacterianas / Factores de Transcripción Idioma: En Revista: Mol Microbiol Asunto de la revista: BIOLOGIA MOLECULAR / MICROBIOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos