Your browser doesn't support javascript.
loading
The Molecular Switching Mechanism at the Conserved D(E)RY Motif in Class-A GPCRs.
Sandoval, Angelica; Eichler, Stefanie; Madathil, Sineej; Reeves, Philip J; Fahmy, Karim; Böckmann, Rainer A.
Afiliación
  • Sandoval A; Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
  • Eichler S; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, and Technische Universität Dresden, Dresden, Germany.
  • Madathil S; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
  • Reeves PJ; School of Biological Sciences, University of Essex, Colchester, United Kingdom.
  • Fahmy K; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, and Technische Universität Dresden, Dresden, Germany. Electronic address: k.fahmy@hzdr.de.
  • Böckmann RA; Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany. Electronic address: rainer.boeckmann@fau.de.
Biophys J ; 111(1): 79-89, 2016 Jul 12.
Article en En | MEDLINE | ID: mdl-27410736
ABSTRACT
The disruption of ionic and H-bond interactions between the cytosolic ends of transmembrane helices TM3 and TM6 of class-A (rhodopsin-like) G protein-coupled receptors (GPCRs) is a hallmark for their activation by chemical or physical stimuli. In the bovine photoreceptor rhodopsin, this is accompanied by proton uptake at Glu(134) in the class-conserved D(E)RY motif. Studies on TM3 model peptides proposed a crucial role of the lipid bilayer in linking protonation to stabilization of an active state-like conformation. However, the molecular details of this linkage could not be resolved and have been addressed in this study by molecular dynamics (MD) simulations on TM3 model peptides in a bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). We show that protonation of the conserved glutamic acid alters the peptide insertion depth in the membrane, its side-chain rotamer preferences, and stabilizes the C-terminal helical structure. These factors contribute to the rise of the side-chain pKa (> 6) and to reduced polarity around the TM3 C terminus as confirmed by fluorescence spectroscopy. Helix stabilization requires the protonated carboxyl group; unexpectedly, this stabilization could not be evoked with an amide in MD simulations. Additionally, time-resolved Fourier transform infrared (FTIR) spectroscopy of TM3 model peptides revealed a different kinetics for lipid ester carbonyl hydration, suggesting that the carboxyl is linked to more extended H-bond clusters than an amide. Remarkably, this was seen as well in DOPC-reconstituted Glu(134)- and Gln(134)-containing bovine opsin mutants and demonstrates that the D(E)RY motif is a hydrated microdomain. The function of the D(E)RY motif as a proton switch is suggested to be based on the reorganization of the H-bond network at the membrane interface.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Secuencia Conservada / Receptores Acoplados a Proteínas G Tipo de estudio: Prognostic_studies Idioma: En Revista: Biophys J Año: 2016 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Secuencia Conservada / Receptores Acoplados a Proteínas G Tipo de estudio: Prognostic_studies Idioma: En Revista: Biophys J Año: 2016 Tipo del documento: Article País de afiliación: Alemania