Your browser doesn't support javascript.
loading
Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues.
Ku, Taeyun; Swaney, Justin; Park, Jeong-Yoon; Albanese, Alexandre; Murray, Evan; Cho, Jae Hun; Park, Young-Gyun; Mangena, Vamsi; Chen, Jiapei; Chung, Kwanghun.
Afiliación
  • Ku T; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.
  • Swaney J; Picower Institute for Learning and Memory, MIT, Cambridge, Massachusetts, USA.
  • Park JY; Department of Chemical Engineering, MIT, Cambridge, Massachusetts, USA.
  • Albanese A; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.
  • Murray E; Picower Institute for Learning and Memory, MIT, Cambridge, Massachusetts, USA.
  • Cho JH; Department of Neurosurgery, Gangnam Severance Hospital, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
  • Park YG; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.
  • Mangena V; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.
  • Chen J; Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, USA.
  • Chung K; Department of Chemical Engineering, MIT, Cambridge, Massachusetts, USA.
Nat Biotechnol ; 34(9): 973-81, 2016 09.
Article en En | MEDLINE | ID: mdl-27454740
The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sinapsis / Encéfalo / Proteoma / Imagenología Tridimensional / Imagen Molecular Límite: Animals Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sinapsis / Encéfalo / Proteoma / Imagenología Tridimensional / Imagen Molecular Límite: Animals Idioma: En Revista: Nat Biotechnol Asunto de la revista: BIOTECNOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos