Your browser doesn't support javascript.
loading
Positive Selection Drives Evolution at the Host-Filovirus Interaction Surface.
Pontremoli, Chiara; Forni, Diego; Cagliani, Rachele; Filippi, Giulia; De Gioia, Luca; Pozzoli, Uberto; Clerici, Mario; Sironi, Manuela.
Afiliación
  • Pontremoli C; Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy.
  • Forni D; Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy.
  • Cagliani R; Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy.
  • Filippi G; Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.
  • De Gioia L; Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy.
  • Pozzoli U; Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy.
  • Clerici M; Department of Physiopathology and Transplantation, University of Milan, Milan, Italy Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy.
  • Sironi M; Scientific Institute IRCCS E.MEDEA, Bioinformatics, Bosisio Parini, Italy manuela.sironi@bp.lnf.it.
Mol Biol Evol ; 33(11): 2836-2847, 2016 11.
Article en En | MEDLINE | ID: mdl-27512112
Filovirus infection is mediated by engagement of the surface-exposed glycoprotein (GP) by its cellular receptor, NPC1 (Niemann-Pick C1). Two loops in the C domain of NPC1 (NPC1-C) bind filovirus GP. Herein, we show that filovirus GP and NPC1-C evolve under mutual selective pressure. Analysis of a large mammalian phylogeny indicated that strong functional/structural constraints limit the NPC1 sequence space available for adaptive change and most sites at the contact interface with GP are under negative selection. These constraints notwithstanding, we detected positive selection at NPC1-C in all mammalian orders, from Primates to Xenarthra. Different codons evolved adaptively in distinct mammals, and most selected sites are located within the two NPC1-C loops that engage GP, or at their anchor points. In Homininae, NPC1-C was a preferential selection target, and the T419I variant possibly represents a human-specific adaptation to filovirus infection. On the other side of the arms-race, GP evolved adaptively during filovirus speciation. One of the selected sites (S142Q) establishes several atom-to-atom contacts with NPC1-C. Additional selected sites are located within epitopes recognized by neutralizing antibodies, including the 14G7 epitope, where sites selected during the recent EBOV epidemic also map. Finally, pairs of co-evolving sites in Marburgviruses and Ebolaviruses were found to involve antigenic determinants. These findings suggest that the host humoral immune response was a major selective pressure during filovirus speciation. The S142Q variant may contribute to determine Ebolavirus host range in the wild. If this were the case, EBOV/BDBV (S142) and SUDV (Q142) may not share the same reservoir(s).
Asunto(s)
Palabras clave
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Selección Genética / Filoviridae Límite: Animals / Humans Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2016 Tipo del documento: Article País de afiliación: Italia
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Selección Genética / Filoviridae Límite: Animals / Humans Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2016 Tipo del documento: Article País de afiliación: Italia