Your browser doesn't support javascript.
loading
Detecting cognizable trends of gene expression in a time series RNA-sequencing experiment: a bootstrap approach.
Chatterjee, Shatakshee; Majumder, Partha P; Pandey, Priyanka.
Afiliación
  • Chatterjee S; National Institute of Biomedical Genomics, Netaji Subhas Sanatorium (T. B. Hospital), P.O.: N.S.S., Kalyani 741 251, India.pp1@nibmg.ac.in.
J Genet ; 95(3): 587-93, 2016 Sep.
Article en En | MEDLINE | ID: mdl-27659329
Study of temporal trajectory of gene expression is important. RNA sequencing is popular in genome-scale studies of transcription. Because of high expenses involved, many time-course RNA sequencing studies are challenged by inadequacy of sample sizes. This poses difficulties in conducting formal statistical tests of significance of null hypotheses. We propose a bootstrap algorithm to identify 'cognizable' 'time-trends' of gene expression. Properties of the proposed algorithm are derived using a simulation study. The proposed algorithm captured known 'time-trends' in the simulated data with a high probability of success, even when sample sizes were small (n < 10). The proposed statistical method is efficient and robust to capture 'cognizable' 'time-trends' in RNA sequencing data.
Asunto(s)
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transcripción Genética / Algoritmos / Monocitos / Regulación de la Expresión Génica / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Genet Año: 2016 Tipo del documento: Article
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Transcripción Genética / Algoritmos / Monocitos / Regulación de la Expresión Génica / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Genet Año: 2016 Tipo del documento: Article