Your browser doesn't support javascript.
loading
Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost.
Sperry, John S; Venturas, Martin D; Anderegg, William R L; Mencuccini, Maurizio; Mackay, D Scott; Wang, Yujie; Love, David M.
Afiliación
  • Sperry JS; Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA.
  • Venturas MD; Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA.
  • Anderegg WRL; Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA.
  • Mencuccini M; School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3Ju, UK.
  • Mackay DS; ICREA at CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain.
  • Wang Y; Department of Geography, State University of New York, Buffalo, NY, 14260, USA.
  • Love DM; Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA.
Plant Cell Environ ; 40(6): 816-830, 2017 Jun.
Article en En | MEDLINE | ID: mdl-27764894
ABSTRACT
Stomatal regulation presumably evolved to optimize CO2 for H2 O exchange in response to changing conditions. If the optimization criterion can be readily measured or calculated, then stomatal responses can be efficiently modelled without recourse to empirical models or underlying mechanism. Previous efforts have been challenged by the lack of a transparent index for the cost of losing water. Yet it is accepted that stomata control water loss to avoid excessive loss of hydraulic conductance from cavitation and soil drying. Proximity to hydraulic failure and desiccation can represent the cost of water loss. If at any given instant, the stomatal aperture adjusts to maximize the instantaneous difference between photosynthetic gain and hydraulic cost, then a model can predict the trajectory of stomatal responses to changes in environment across time. Results of this optimization model are consistent with the widely used Ball-Berry-Leuning empirical model (r2 > 0.99) across a wide range of vapour pressure deficits and ambient CO2 concentrations for wet soil. The advantage of the optimization approach is the absence of empirical coefficients, applicability to dry as well as wet soil and prediction of plant hydraulic status along with gas exchange.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fotosíntesis / Estomas de Plantas / Modelos Biológicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Plant Cell Environ Asunto de la revista: BOTANICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fotosíntesis / Estomas de Plantas / Modelos Biológicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Plant Cell Environ Asunto de la revista: BOTANICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos