Your browser doesn't support javascript.
loading
Balancing selection shapes density-dependent foraging behaviour.
Greene, Joshua S; Brown, Maximillian; Dobosiewicz, May; Ishida, Itzel G; Macosko, Evan Z; Zhang, Xinxing; Butcher, Rebecca A; Cline, Devin J; McGrath, Patrick T; Bargmann, Cornelia I.
Afiliación
  • Greene JS; Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA.
  • Brown M; Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA.
  • Dobosiewicz M; Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA.
  • Ishida IG; Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA.
  • Macosko EZ; Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA.
  • Zhang X; Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
  • Butcher RA; Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
  • Cline DJ; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
  • McGrath PT; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
  • Bargmann CI; Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA.
Nature ; 539(7628): 254-258, 2016 11 10.
Article en En | MEDLINE | ID: mdl-27799655
ABSTRACT
The optimal foraging strategy in a given environment depends on the number of competing individuals and their behavioural strategies. Little is known about the genes and neural circuits that integrate social information into foraging decisions. Here we show that ascaroside pheromones, small glycolipids that signal population density, suppress exploratory foraging in Caenorhabditis elegans, and that heritable variation in this behaviour generates alternative foraging strategies. We find that natural C. elegans isolates differ in their sensitivity to the potent ascaroside icas#9 (IC-asc-C5). A quantitative trait locus (QTL) regulating icas#9 sensitivity includes srx-43, a G-protein-coupled icas#9 receptor that acts in the ASI class of sensory neurons to suppress exploration. Two ancient haplotypes associated with this QTL confer competitive growth advantages that depend on ascaroside secretion, its detection by srx-43 and the distribution of food. These results suggest that balancing selection at the srx-43 locus generates alternative density-dependent behaviours, fulfilling a prediction of foraging game theory.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Selección Genética / Caenorhabditis elegans / Conducta Alimentaria Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nature Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Selección Genética / Caenorhabditis elegans / Conducta Alimentaria Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nature Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos